Metamath Proof Explorer


Theorem sltso

Description: Surreal less than totally orders the surreals. Axiom O of Alling p. 184. (Contributed by Scott Fenton, 9-Jun-2011)

Ref Expression
Assertion sltso < s Or No

Proof

Step Hyp Ref Expression
1 sltsolem1 1 𝑜 1 𝑜 2 𝑜 2 𝑜 Or 1 𝑜 2 𝑜
2 df-no No = f | x On f : x 1 𝑜 2 𝑜
3 df-slt < s = f g | f No g No x On y x f y = g y f x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 g x
4 nosgnn0 ¬ 1 𝑜 2 𝑜
5 1 2 3 4 soseq < s Or No