Metamath Proof Explorer


Theorem sltso

Description: Surreal less than totally orders the surreals. Axiom O of Alling p. 184. (Contributed by Scott Fenton, 9-Jun-2011)

Ref Expression
Assertion sltso <s Or No

Proof

Step Hyp Ref Expression
1 sltsolem1 { ⟨ 1o , ∅ ⟩ , ⟨ 1o , 2o ⟩ , ⟨ ∅ , 2o ⟩ } Or ( { 1o , 2o } ∪ { ∅ } )
2 df-no No = { 𝑓 ∣ ∃ 𝑥 ∈ On 𝑓 : 𝑥 ⟶ { 1o , 2o } }
3 df-slt <s = { ⟨ 𝑓 , 𝑔 ⟩ ∣ ( ( 𝑓 No 𝑔 No ) ∧ ∃ 𝑥 ∈ On ( ∀ 𝑦𝑥 ( 𝑓𝑦 ) = ( 𝑔𝑦 ) ∧ ( 𝑓𝑥 ) { ⟨ 1o , ∅ ⟩ , ⟨ 1o , 2o ⟩ , ⟨ ∅ , 2o ⟩ } ( 𝑔𝑥 ) ) ) }
4 nosgnn0 ¬ ∅ ∈ { 1o , 2o }
5 1 2 3 4 soseq <s Or No