Metamath Proof Explorer


Theorem soseq

Description: A linear ordering of sequences of ordinals. (Contributed by Scott Fenton, 8-Jun-2011)

Ref Expression
Hypotheses soseq.1 R Or A
soseq.2 F = f | x On f : x A
soseq.3 S = f g | f F g F x On y x f y = g y f x R g x
soseq.4 ¬ A
Assertion soseq S Or F

Proof

Step Hyp Ref Expression
1 soseq.1 R Or A
2 soseq.2 F = f | x On f : x A
3 soseq.3 S = f g | f F g F x On y x f y = g y f x R g x
4 soseq.4 ¬ A
5 sopo R Or A R Po A
6 1 5 ax-mp R Po A
7 6 2 3 poseq S Po F
8 eleq1w f = a f F a F
9 8 anbi1d f = a f F g F a F g F
10 fveq1 f = a f y = a y
11 10 eqeq1d f = a f y = g y a y = g y
12 11 ralbidv f = a y x f y = g y y x a y = g y
13 fveq1 f = a f x = a x
14 13 breq1d f = a f x R g x a x R g x
15 12 14 anbi12d f = a y x f y = g y f x R g x y x a y = g y a x R g x
16 15 rexbidv f = a x On y x f y = g y f x R g x x On y x a y = g y a x R g x
17 9 16 anbi12d f = a f F g F x On y x f y = g y f x R g x a F g F x On y x a y = g y a x R g x
18 eleq1w g = b g F b F
19 18 anbi2d g = b a F g F a F b F
20 fveq1 g = b g y = b y
21 20 eqeq2d g = b a y = g y a y = b y
22 21 ralbidv g = b y x a y = g y y x a y = b y
23 fveq1 g = b g x = b x
24 23 breq2d g = b a x R g x a x R b x
25 22 24 anbi12d g = b y x a y = g y a x R g x y x a y = b y a x R b x
26 25 rexbidv g = b x On y x a y = g y a x R g x x On y x a y = b y a x R b x
27 19 26 anbi12d g = b a F g F x On y x a y = g y a x R g x a F b F x On y x a y = b y a x R b x
28 17 27 3 brabg a F b F a S b a F b F x On y x a y = b y a x R b x
29 28 bianabs a F b F a S b x On y x a y = b y a x R b x
30 eleq1w f = b f F b F
31 30 anbi1d f = b f F g F b F g F
32 fveq1 f = b f y = b y
33 32 eqeq1d f = b f y = g y b y = g y
34 33 ralbidv f = b y x f y = g y y x b y = g y
35 fveq1 f = b f x = b x
36 35 breq1d f = b f x R g x b x R g x
37 34 36 anbi12d f = b y x f y = g y f x R g x y x b y = g y b x R g x
38 37 rexbidv f = b x On y x f y = g y f x R g x x On y x b y = g y b x R g x
39 31 38 anbi12d f = b f F g F x On y x f y = g y f x R g x b F g F x On y x b y = g y b x R g x
40 eleq1w g = a g F a F
41 40 anbi2d g = a b F g F b F a F
42 fveq1 g = a g y = a y
43 42 eqeq2d g = a b y = g y b y = a y
44 43 ralbidv g = a y x b y = g y y x b y = a y
45 fveq1 g = a g x = a x
46 45 breq2d g = a b x R g x b x R a x
47 44 46 anbi12d g = a y x b y = g y b x R g x y x b y = a y b x R a x
48 47 rexbidv g = a x On y x b y = g y b x R g x x On y x b y = a y b x R a x
49 41 48 anbi12d g = a b F g F x On y x b y = g y b x R g x b F a F x On y x b y = a y b x R a x
50 39 49 3 brabg b F a F b S a b F a F x On y x b y = a y b x R a x
51 50 bianabs b F a F b S a x On y x b y = a y b x R a x
52 51 ancoms a F b F b S a x On y x b y = a y b x R a x
53 29 52 orbi12d a F b F a S b b S a x On y x a y = b y a x R b x x On y x b y = a y b x R a x
54 53 notbid a F b F ¬ a S b b S a ¬ x On y x a y = b y a x R b x x On y x b y = a y b x R a x
55 ralinexa x On y x a y = b y ¬ a x R b x b x R a x ¬ x On y x a y = b y a x R b x b x R a x
56 andi y x a y = b y a x R b x b x R a x y x a y = b y a x R b x y x a y = b y b x R a x
57 eqcom a y = b y b y = a y
58 57 ralbii y x a y = b y y x b y = a y
59 58 anbi1i y x a y = b y b x R a x y x b y = a y b x R a x
60 59 orbi2i y x a y = b y a x R b x y x a y = b y b x R a x y x a y = b y a x R b x y x b y = a y b x R a x
61 56 60 bitri y x a y = b y a x R b x b x R a x y x a y = b y a x R b x y x b y = a y b x R a x
62 61 rexbii x On y x a y = b y a x R b x b x R a x x On y x a y = b y a x R b x y x b y = a y b x R a x
63 r19.43 x On y x a y = b y a x R b x y x b y = a y b x R a x x On y x a y = b y a x R b x x On y x b y = a y b x R a x
64 62 63 bitri x On y x a y = b y a x R b x b x R a x x On y x a y = b y a x R b x x On y x b y = a y b x R a x
65 55 64 xchbinx x On y x a y = b y ¬ a x R b x b x R a x ¬ x On y x a y = b y a x R b x x On y x b y = a y b x R a x
66 feq2 x = y f : x A f : y A
67 66 cbvrexvw x On f : x A y On f : y A
68 67 abbii f | x On f : x A = f | y On f : y A
69 2 68 eqtri F = f | y On f : y A
70 69 orderseqlem a F a x A
71 69 orderseqlem b F b x A
72 sotrieq R Or A a x A b x A a x = b x ¬ a x R b x b x R a x
73 1 72 mpan a x A b x A a x = b x ¬ a x R b x b x R a x
74 70 71 73 syl2an a F b F a x = b x ¬ a x R b x b x R a x
75 74 imbi2d a F b F y x a y = b y a x = b x y x a y = b y ¬ a x R b x b x R a x
76 75 ralbidv a F b F x On y x a y = b y a x = b x x On y x a y = b y ¬ a x R b x b x R a x
77 vex y V
78 fveq2 x = y a x = a y
79 fveq2 x = y b x = b y
80 78 79 eqeq12d x = y a x = b x a y = b y
81 77 80 sbcie [˙y / x]˙ a x = b x a y = b y
82 81 ralbii y x [˙y / x]˙ a x = b x y x a y = b y
83 82 imbi1i y x [˙y / x]˙ a x = b x a x = b x y x a y = b y a x = b x
84 83 ralbii x On y x [˙y / x]˙ a x = b x a x = b x x On y x a y = b y a x = b x
85 tfisg x On y x [˙y / x]˙ a x = b x a x = b x x On a x = b x
86 84 85 sylbir x On y x a y = b y a x = b x x On a x = b x
87 vex a V
88 feq1 f = a f : x A a : x A
89 88 rexbidv f = a x On f : x A x On a : x A
90 87 89 2 elab2 a F x On a : x A
91 feq2 x = p a : x A a : p A
92 91 cbvrexvw x On a : x A p On a : p A
93 90 92 bitri a F p On a : p A
94 vex b V
95 feq1 f = b f : x A b : x A
96 95 rexbidv f = b x On f : x A x On b : x A
97 94 96 2 elab2 b F x On b : x A
98 feq2 x = q b : x A b : q A
99 98 cbvrexvw x On b : x A q On b : q A
100 97 99 bitri b F q On b : q A
101 93 100 anbi12i a F b F p On a : p A q On b : q A
102 reeanv p On q On a : p A b : q A p On a : p A q On b : q A
103 101 102 bitr4i a F b F p On q On a : p A b : q A
104 onss q On q On
105 ssralv q On x On a x = b x x q a x = b x
106 104 105 syl q On x On a x = b x x q a x = b x
107 106 ad2antlr p On q On a : p A b : q A x On a x = b x x q a x = b x
108 fveq2 x = p a x = a p
109 fveq2 x = p b x = b p
110 108 109 eqeq12d x = p a x = b x a p = b p
111 110 rspcv p q x q a x = b x a p = b p
112 111 a1i p On q On a : p A b : q A p q x q a x = b x a p = b p
113 ffvelrn b : q A p q b p A
114 fdm a : p A dom a = p
115 eloni p On Ord p
116 ordirr Ord p ¬ p p
117 115 116 syl p On ¬ p p
118 eleq2 dom a = p p dom a p p
119 118 notbid dom a = p ¬ p dom a ¬ p p
120 119 biimparc ¬ p p dom a = p ¬ p dom a
121 117 120 sylan p On dom a = p ¬ p dom a
122 ndmfv ¬ p dom a a p =
123 eqtr2 a p = a p = b p = b p
124 eleq1 = b p A b p A
125 124 biimprd = b p b p A A
126 123 125 syl a p = a p = b p b p A A
127 126 ex a p = a p = b p b p A A
128 121 122 127 3syl p On dom a = p a p = b p b p A A
129 128 com23 p On dom a = p b p A a p = b p A
130 114 129 sylan2 p On a : p A b p A a p = b p A
131 130 adantlr p On q On a : p A b p A a p = b p A
132 113 131 syl5 p On q On a : p A b : q A p q a p = b p A
133 132 exp4b p On q On a : p A b : q A p q a p = b p A
134 133 imp32 p On q On a : p A b : q A p q a p = b p A
135 112 134 syldd p On q On a : p A b : q A p q x q a x = b x A
136 135 com23 p On q On a : p A b : q A x q a x = b x p q A
137 136 imp p On q On a : p A b : q A x q a x = b x p q A
138 4 137 mtoi p On q On a : p A b : q A x q a x = b x ¬ p q
139 138 ex p On q On a : p A b : q A x q a x = b x ¬ p q
140 107 139 syld p On q On a : p A b : q A x On a x = b x ¬ p q
141 onss p On p On
142 ssralv p On x On a x = b x x p a x = b x
143 141 142 syl p On x On a x = b x x p a x = b x
144 143 ad2antrr p On q On a : p A b : q A x On a x = b x x p a x = b x
145 fveq2 x = q a x = a q
146 fveq2 x = q b x = b q
147 145 146 eqeq12d x = q a x = b x a q = b q
148 147 rspcv q p x p a x = b x a q = b q
149 148 a1i p On q On a : p A b : q A q p x p a x = b x a q = b q
150 ffvelrn a : p A q p a q A
151 fdm b : q A dom b = q
152 eloni q On Ord q
153 ordirr Ord q ¬ q q
154 152 153 syl q On ¬ q q
155 eleq2 dom b = q q dom b q q
156 155 notbid dom b = q ¬ q dom b ¬ q q
157 156 biimparc ¬ q q dom b = q ¬ q dom b
158 ndmfv ¬ q dom b b q =
159 157 158 syl ¬ q q dom b = q b q =
160 154 159 sylan q On dom b = q b q =
161 eqtr a q = b q b q = a q =
162 eleq1 a q = a q A A
163 162 biimpd a q = a q A A
164 161 163 syl a q = b q b q = a q A A
165 164 expcom b q = a q = b q a q A A
166 165 com23 b q = a q A a q = b q A
167 160 166 syl q On dom b = q a q A a q = b q A
168 167 adantll p On q On dom b = q a q A a q = b q A
169 151 168 sylan2 p On q On b : q A a q A a q = b q A
170 150 169 syl5 p On q On b : q A a : p A q p a q = b q A
171 170 exp4b p On q On b : q A a : p A q p a q = b q A
172 171 com23 p On q On a : p A b : q A q p a q = b q A
173 172 imp32 p On q On a : p A b : q A q p a q = b q A
174 149 173 syldd p On q On a : p A b : q A q p x p a x = b x A
175 174 com23 p On q On a : p A b : q A x p a x = b x q p A
176 175 imp p On q On a : p A b : q A x p a x = b x q p A
177 4 176 mtoi p On q On a : p A b : q A x p a x = b x ¬ q p
178 177 ex p On q On a : p A b : q A x p a x = b x ¬ q p
179 144 178 syld p On q On a : p A b : q A x On a x = b x ¬ q p
180 140 179 jcad p On q On a : p A b : q A x On a x = b x ¬ p q ¬ q p
181 ordtri3or Ord p Ord q p q p = q q p
182 115 152 181 syl2an p On q On p q p = q q p
183 182 adantr p On q On a : p A b : q A p q p = q q p
184 3orel13 ¬ p q ¬ q p p q p = q q p p = q
185 180 183 184 syl6ci p On q On a : p A b : q A x On a x = b x p = q
186 185 144 jcad p On q On a : p A b : q A x On a x = b x p = q x p a x = b x
187 ffn a : p A a Fn p
188 ffn b : q A b Fn q
189 eqfnfv2 a Fn p b Fn q a = b p = q x p a x = b x
190 187 188 189 syl2an a : p A b : q A a = b p = q x p a x = b x
191 190 adantl p On q On a : p A b : q A a = b p = q x p a x = b x
192 186 191 sylibrd p On q On a : p A b : q A x On a x = b x a = b
193 192 ex p On q On a : p A b : q A x On a x = b x a = b
194 193 rexlimivv p On q On a : p A b : q A x On a x = b x a = b
195 103 194 sylbi a F b F x On a x = b x a = b
196 86 195 syl5 a F b F x On y x a y = b y a x = b x a = b
197 76 196 sylbird a F b F x On y x a y = b y ¬ a x R b x b x R a x a = b
198 65 197 syl5bir a F b F ¬ x On y x a y = b y a x R b x x On y x b y = a y b x R a x a = b
199 54 198 sylbid a F b F ¬ a S b b S a a = b
200 199 orrd a F b F a S b b S a a = b
201 3orcomb a S b a = b b S a a S b b S a a = b
202 df-3or a S b b S a a = b a S b b S a a = b
203 201 202 bitr2i a S b b S a a = b a S b a = b b S a
204 200 203 sylib a F b F a S b a = b b S a
205 204 rgen2 a F b F a S b a = b b S a
206 df-so S Or F S Po F a F b F a S b a = b b S a
207 7 205 206 mpbir2an S Or F