Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Ordering Ordinal Sequences
soseq
Next ⟩
The support of functions
Metamath Proof Explorer
Ascii
Unicode
Theorem
soseq
Description:
A linear ordering of ordinal sequences.
(Contributed by
Scott Fenton
, 8-Jun-2011)
Ref
Expression
Hypotheses
soseq.1
⊢
R
Or
A
∪
∅
soseq.2
⊢
F
=
f
|
∃
x
∈
On
f
:
x
⟶
A
soseq.3
⊢
S
=
f
g
|
f
∈
F
∧
g
∈
F
∧
∃
x
∈
On
∀
y
∈
x
f
y
=
g
y
∧
f
x
R
g
x
soseq.4
⊢
¬
∅
∈
A
Assertion
soseq
⊢
S
Or
F
Proof
Step
Hyp
Ref
Expression
1
soseq.1
⊢
R
Or
A
∪
∅
2
soseq.2
⊢
F
=
f
|
∃
x
∈
On
f
:
x
⟶
A
3
soseq.3
⊢
S
=
f
g
|
f
∈
F
∧
g
∈
F
∧
∃
x
∈
On
∀
y
∈
x
f
y
=
g
y
∧
f
x
R
g
x
4
soseq.4
⊢
¬
∅
∈
A
5
sopo
⊢
R
Or
A
∪
∅
→
R
Po
A
∪
∅
6
1
5
ax-mp
⊢
R
Po
A
∪
∅
7
6
2
3
poseq
⊢
S
Po
F
8
eleq1w
⊢
f
=
a
→
f
∈
F
↔
a
∈
F
9
8
anbi1d
⊢
f
=
a
→
f
∈
F
∧
g
∈
F
↔
a
∈
F
∧
g
∈
F
10
fveq1
⊢
f
=
a
→
f
y
=
a
y
11
10
eqeq1d
⊢
f
=
a
→
f
y
=
g
y
↔
a
y
=
g
y
12
11
ralbidv
⊢
f
=
a
→
∀
y
∈
x
f
y
=
g
y
↔
∀
y
∈
x
a
y
=
g
y
13
fveq1
⊢
f
=
a
→
f
x
=
a
x
14
13
breq1d
⊢
f
=
a
→
f
x
R
g
x
↔
a
x
R
g
x
15
12
14
anbi12d
⊢
f
=
a
→
∀
y
∈
x
f
y
=
g
y
∧
f
x
R
g
x
↔
∀
y
∈
x
a
y
=
g
y
∧
a
x
R
g
x
16
15
rexbidv
⊢
f
=
a
→
∃
x
∈
On
∀
y
∈
x
f
y
=
g
y
∧
f
x
R
g
x
↔
∃
x
∈
On
∀
y
∈
x
a
y
=
g
y
∧
a
x
R
g
x
17
9
16
anbi12d
⊢
f
=
a
→
f
∈
F
∧
g
∈
F
∧
∃
x
∈
On
∀
y
∈
x
f
y
=
g
y
∧
f
x
R
g
x
↔
a
∈
F
∧
g
∈
F
∧
∃
x
∈
On
∀
y
∈
x
a
y
=
g
y
∧
a
x
R
g
x
18
eleq1w
⊢
g
=
b
→
g
∈
F
↔
b
∈
F
19
18
anbi2d
⊢
g
=
b
→
a
∈
F
∧
g
∈
F
↔
a
∈
F
∧
b
∈
F
20
fveq1
⊢
g
=
b
→
g
y
=
b
y
21
20
eqeq2d
⊢
g
=
b
→
a
y
=
g
y
↔
a
y
=
b
y
22
21
ralbidv
⊢
g
=
b
→
∀
y
∈
x
a
y
=
g
y
↔
∀
y
∈
x
a
y
=
b
y
23
fveq1
⊢
g
=
b
→
g
x
=
b
x
24
23
breq2d
⊢
g
=
b
→
a
x
R
g
x
↔
a
x
R
b
x
25
22
24
anbi12d
⊢
g
=
b
→
∀
y
∈
x
a
y
=
g
y
∧
a
x
R
g
x
↔
∀
y
∈
x
a
y
=
b
y
∧
a
x
R
b
x
26
25
rexbidv
⊢
g
=
b
→
∃
x
∈
On
∀
y
∈
x
a
y
=
g
y
∧
a
x
R
g
x
↔
∃
x
∈
On
∀
y
∈
x
a
y
=
b
y
∧
a
x
R
b
x
27
19
26
anbi12d
⊢
g
=
b
→
a
∈
F
∧
g
∈
F
∧
∃
x
∈
On
∀
y
∈
x
a
y
=
g
y
∧
a
x
R
g
x
↔
a
∈
F
∧
b
∈
F
∧
∃
x
∈
On
∀
y
∈
x
a
y
=
b
y
∧
a
x
R
b
x
28
17
27
3
brabg
⊢
a
∈
F
∧
b
∈
F
→
a
S
b
↔
a
∈
F
∧
b
∈
F
∧
∃
x
∈
On
∀
y
∈
x
a
y
=
b
y
∧
a
x
R
b
x
29
28
bianabs
⊢
a
∈
F
∧
b
∈
F
→
a
S
b
↔
∃
x
∈
On
∀
y
∈
x
a
y
=
b
y
∧
a
x
R
b
x
30
eleq1w
⊢
f
=
b
→
f
∈
F
↔
b
∈
F
31
30
anbi1d
⊢
f
=
b
→
f
∈
F
∧
g
∈
F
↔
b
∈
F
∧
g
∈
F
32
fveq1
⊢
f
=
b
→
f
y
=
b
y
33
32
eqeq1d
⊢
f
=
b
→
f
y
=
g
y
↔
b
y
=
g
y
34
33
ralbidv
⊢
f
=
b
→
∀
y
∈
x
f
y
=
g
y
↔
∀
y
∈
x
b
y
=
g
y
35
fveq1
⊢
f
=
b
→
f
x
=
b
x
36
35
breq1d
⊢
f
=
b
→
f
x
R
g
x
↔
b
x
R
g
x
37
34
36
anbi12d
⊢
f
=
b
→
∀
y
∈
x
f
y
=
g
y
∧
f
x
R
g
x
↔
∀
y
∈
x
b
y
=
g
y
∧
b
x
R
g
x
38
37
rexbidv
⊢
f
=
b
→
∃
x
∈
On
∀
y
∈
x
f
y
=
g
y
∧
f
x
R
g
x
↔
∃
x
∈
On
∀
y
∈
x
b
y
=
g
y
∧
b
x
R
g
x
39
31
38
anbi12d
⊢
f
=
b
→
f
∈
F
∧
g
∈
F
∧
∃
x
∈
On
∀
y
∈
x
f
y
=
g
y
∧
f
x
R
g
x
↔
b
∈
F
∧
g
∈
F
∧
∃
x
∈
On
∀
y
∈
x
b
y
=
g
y
∧
b
x
R
g
x
40
eleq1w
⊢
g
=
a
→
g
∈
F
↔
a
∈
F
41
40
anbi2d
⊢
g
=
a
→
b
∈
F
∧
g
∈
F
↔
b
∈
F
∧
a
∈
F
42
fveq1
⊢
g
=
a
→
g
y
=
a
y
43
42
eqeq2d
⊢
g
=
a
→
b
y
=
g
y
↔
b
y
=
a
y
44
43
ralbidv
⊢
g
=
a
→
∀
y
∈
x
b
y
=
g
y
↔
∀
y
∈
x
b
y
=
a
y
45
fveq1
⊢
g
=
a
→
g
x
=
a
x
46
45
breq2d
⊢
g
=
a
→
b
x
R
g
x
↔
b
x
R
a
x
47
44
46
anbi12d
⊢
g
=
a
→
∀
y
∈
x
b
y
=
g
y
∧
b
x
R
g
x
↔
∀
y
∈
x
b
y
=
a
y
∧
b
x
R
a
x
48
47
rexbidv
⊢
g
=
a
→
∃
x
∈
On
∀
y
∈
x
b
y
=
g
y
∧
b
x
R
g
x
↔
∃
x
∈
On
∀
y
∈
x
b
y
=
a
y
∧
b
x
R
a
x
49
41
48
anbi12d
⊢
g
=
a
→
b
∈
F
∧
g
∈
F
∧
∃
x
∈
On
∀
y
∈
x
b
y
=
g
y
∧
b
x
R
g
x
↔
b
∈
F
∧
a
∈
F
∧
∃
x
∈
On
∀
y
∈
x
b
y
=
a
y
∧
b
x
R
a
x
50
39
49
3
brabg
⊢
b
∈
F
∧
a
∈
F
→
b
S
a
↔
b
∈
F
∧
a
∈
F
∧
∃
x
∈
On
∀
y
∈
x
b
y
=
a
y
∧
b
x
R
a
x
51
50
bianabs
⊢
b
∈
F
∧
a
∈
F
→
b
S
a
↔
∃
x
∈
On
∀
y
∈
x
b
y
=
a
y
∧
b
x
R
a
x
52
51
ancoms
⊢
a
∈
F
∧
b
∈
F
→
b
S
a
↔
∃
x
∈
On
∀
y
∈
x
b
y
=
a
y
∧
b
x
R
a
x
53
29
52
orbi12d
⊢
a
∈
F
∧
b
∈
F
→
a
S
b
∨
b
S
a
↔
∃
x
∈
On
∀
y
∈
x
a
y
=
b
y
∧
a
x
R
b
x
∨
∃
x
∈
On
∀
y
∈
x
b
y
=
a
y
∧
b
x
R
a
x
54
53
notbid
⊢
a
∈
F
∧
b
∈
F
→
¬
a
S
b
∨
b
S
a
↔
¬
∃
x
∈
On
∀
y
∈
x
a
y
=
b
y
∧
a
x
R
b
x
∨
∃
x
∈
On
∀
y
∈
x
b
y
=
a
y
∧
b
x
R
a
x
55
ralinexa
⊢
∀
x
∈
On
∀
y
∈
x
a
y
=
b
y
→
¬
a
x
R
b
x
∨
b
x
R
a
x
↔
¬
∃
x
∈
On
∀
y
∈
x
a
y
=
b
y
∧
a
x
R
b
x
∨
b
x
R
a
x
56
andi
⊢
∀
y
∈
x
a
y
=
b
y
∧
a
x
R
b
x
∨
b
x
R
a
x
↔
∀
y
∈
x
a
y
=
b
y
∧
a
x
R
b
x
∨
∀
y
∈
x
a
y
=
b
y
∧
b
x
R
a
x
57
eqcom
⊢
a
y
=
b
y
↔
b
y
=
a
y
58
57
ralbii
⊢
∀
y
∈
x
a
y
=
b
y
↔
∀
y
∈
x
b
y
=
a
y
59
58
anbi1i
⊢
∀
y
∈
x
a
y
=
b
y
∧
b
x
R
a
x
↔
∀
y
∈
x
b
y
=
a
y
∧
b
x
R
a
x
60
59
orbi2i
⊢
∀
y
∈
x
a
y
=
b
y
∧
a
x
R
b
x
∨
∀
y
∈
x
a
y
=
b
y
∧
b
x
R
a
x
↔
∀
y
∈
x
a
y
=
b
y
∧
a
x
R
b
x
∨
∀
y
∈
x
b
y
=
a
y
∧
b
x
R
a
x
61
56
60
bitri
⊢
∀
y
∈
x
a
y
=
b
y
∧
a
x
R
b
x
∨
b
x
R
a
x
↔
∀
y
∈
x
a
y
=
b
y
∧
a
x
R
b
x
∨
∀
y
∈
x
b
y
=
a
y
∧
b
x
R
a
x
62
61
rexbii
⊢
∃
x
∈
On
∀
y
∈
x
a
y
=
b
y
∧
a
x
R
b
x
∨
b
x
R
a
x
↔
∃
x
∈
On
∀
y
∈
x
a
y
=
b
y
∧
a
x
R
b
x
∨
∀
y
∈
x
b
y
=
a
y
∧
b
x
R
a
x
63
r19.43
⊢
∃
x
∈
On
∀
y
∈
x
a
y
=
b
y
∧
a
x
R
b
x
∨
∀
y
∈
x
b
y
=
a
y
∧
b
x
R
a
x
↔
∃
x
∈
On
∀
y
∈
x
a
y
=
b
y
∧
a
x
R
b
x
∨
∃
x
∈
On
∀
y
∈
x
b
y
=
a
y
∧
b
x
R
a
x
64
62
63
bitri
⊢
∃
x
∈
On
∀
y
∈
x
a
y
=
b
y
∧
a
x
R
b
x
∨
b
x
R
a
x
↔
∃
x
∈
On
∀
y
∈
x
a
y
=
b
y
∧
a
x
R
b
x
∨
∃
x
∈
On
∀
y
∈
x
b
y
=
a
y
∧
b
x
R
a
x
65
55
64
xchbinx
⊢
∀
x
∈
On
∀
y
∈
x
a
y
=
b
y
→
¬
a
x
R
b
x
∨
b
x
R
a
x
↔
¬
∃
x
∈
On
∀
y
∈
x
a
y
=
b
y
∧
a
x
R
b
x
∨
∃
x
∈
On
∀
y
∈
x
b
y
=
a
y
∧
b
x
R
a
x
66
feq2
⊢
x
=
y
→
f
:
x
⟶
A
↔
f
:
y
⟶
A
67
66
cbvrexvw
⊢
∃
x
∈
On
f
:
x
⟶
A
↔
∃
y
∈
On
f
:
y
⟶
A
68
67
abbii
⊢
f
|
∃
x
∈
On
f
:
x
⟶
A
=
f
|
∃
y
∈
On
f
:
y
⟶
A
69
2
68
eqtri
⊢
F
=
f
|
∃
y
∈
On
f
:
y
⟶
A
70
69
orderseqlem
⊢
a
∈
F
→
a
x
∈
A
∪
∅
71
69
orderseqlem
⊢
b
∈
F
→
b
x
∈
A
∪
∅
72
sotrieq
⊢
R
Or
A
∪
∅
∧
a
x
∈
A
∪
∅
∧
b
x
∈
A
∪
∅
→
a
x
=
b
x
↔
¬
a
x
R
b
x
∨
b
x
R
a
x
73
1
72
mpan
⊢
a
x
∈
A
∪
∅
∧
b
x
∈
A
∪
∅
→
a
x
=
b
x
↔
¬
a
x
R
b
x
∨
b
x
R
a
x
74
70
71
73
syl2an
⊢
a
∈
F
∧
b
∈
F
→
a
x
=
b
x
↔
¬
a
x
R
b
x
∨
b
x
R
a
x
75
74
imbi2d
⊢
a
∈
F
∧
b
∈
F
→
∀
y
∈
x
a
y
=
b
y
→
a
x
=
b
x
↔
∀
y
∈
x
a
y
=
b
y
→
¬
a
x
R
b
x
∨
b
x
R
a
x
76
75
ralbidv
⊢
a
∈
F
∧
b
∈
F
→
∀
x
∈
On
∀
y
∈
x
a
y
=
b
y
→
a
x
=
b
x
↔
∀
x
∈
On
∀
y
∈
x
a
y
=
b
y
→
¬
a
x
R
b
x
∨
b
x
R
a
x
77
vex
⊢
y
∈
V
78
fveq2
⊢
x
=
y
→
a
x
=
a
y
79
fveq2
⊢
x
=
y
→
b
x
=
b
y
80
78
79
eqeq12d
⊢
x
=
y
→
a
x
=
b
x
↔
a
y
=
b
y
81
77
80
sbcie
⊢
[
˙
y
/
x
]
˙
a
x
=
b
x
↔
a
y
=
b
y
82
81
ralbii
⊢
∀
y
∈
x
[
˙
y
/
x
]
˙
a
x
=
b
x
↔
∀
y
∈
x
a
y
=
b
y
83
82
imbi1i
⊢
∀
y
∈
x
[
˙
y
/
x
]
˙
a
x
=
b
x
→
a
x
=
b
x
↔
∀
y
∈
x
a
y
=
b
y
→
a
x
=
b
x
84
83
ralbii
⊢
∀
x
∈
On
∀
y
∈
x
[
˙
y
/
x
]
˙
a
x
=
b
x
→
a
x
=
b
x
↔
∀
x
∈
On
∀
y
∈
x
a
y
=
b
y
→
a
x
=
b
x
85
tfisg
⊢
∀
x
∈
On
∀
y
∈
x
[
˙
y
/
x
]
˙
a
x
=
b
x
→
a
x
=
b
x
→
∀
x
∈
On
a
x
=
b
x
86
84
85
sylbir
⊢
∀
x
∈
On
∀
y
∈
x
a
y
=
b
y
→
a
x
=
b
x
→
∀
x
∈
On
a
x
=
b
x
87
vex
⊢
a
∈
V
88
feq1
⊢
f
=
a
→
f
:
x
⟶
A
↔
a
:
x
⟶
A
89
88
rexbidv
⊢
f
=
a
→
∃
x
∈
On
f
:
x
⟶
A
↔
∃
x
∈
On
a
:
x
⟶
A
90
87
89
2
elab2
⊢
a
∈
F
↔
∃
x
∈
On
a
:
x
⟶
A
91
feq2
⊢
x
=
p
→
a
:
x
⟶
A
↔
a
:
p
⟶
A
92
91
cbvrexvw
⊢
∃
x
∈
On
a
:
x
⟶
A
↔
∃
p
∈
On
a
:
p
⟶
A
93
90
92
bitri
⊢
a
∈
F
↔
∃
p
∈
On
a
:
p
⟶
A
94
vex
⊢
b
∈
V
95
feq1
⊢
f
=
b
→
f
:
x
⟶
A
↔
b
:
x
⟶
A
96
95
rexbidv
⊢
f
=
b
→
∃
x
∈
On
f
:
x
⟶
A
↔
∃
x
∈
On
b
:
x
⟶
A
97
94
96
2
elab2
⊢
b
∈
F
↔
∃
x
∈
On
b
:
x
⟶
A
98
feq2
⊢
x
=
q
→
b
:
x
⟶
A
↔
b
:
q
⟶
A
99
98
cbvrexvw
⊢
∃
x
∈
On
b
:
x
⟶
A
↔
∃
q
∈
On
b
:
q
⟶
A
100
97
99
bitri
⊢
b
∈
F
↔
∃
q
∈
On
b
:
q
⟶
A
101
93
100
anbi12i
⊢
a
∈
F
∧
b
∈
F
↔
∃
p
∈
On
a
:
p
⟶
A
∧
∃
q
∈
On
b
:
q
⟶
A
102
reeanv
⊢
∃
p
∈
On
∃
q
∈
On
a
:
p
⟶
A
∧
b
:
q
⟶
A
↔
∃
p
∈
On
a
:
p
⟶
A
∧
∃
q
∈
On
b
:
q
⟶
A
103
101
102
bitr4i
⊢
a
∈
F
∧
b
∈
F
↔
∃
p
∈
On
∃
q
∈
On
a
:
p
⟶
A
∧
b
:
q
⟶
A
104
onss
⊢
q
∈
On
→
q
⊆
On
105
ssralv
⊢
q
⊆
On
→
∀
x
∈
On
a
x
=
b
x
→
∀
x
∈
q
a
x
=
b
x
106
104
105
syl
⊢
q
∈
On
→
∀
x
∈
On
a
x
=
b
x
→
∀
x
∈
q
a
x
=
b
x
107
106
ad2antlr
⊢
p
∈
On
∧
q
∈
On
∧
a
:
p
⟶
A
∧
b
:
q
⟶
A
→
∀
x
∈
On
a
x
=
b
x
→
∀
x
∈
q
a
x
=
b
x
108
fveq2
⊢
x
=
p
→
a
x
=
a
p
109
fveq2
⊢
x
=
p
→
b
x
=
b
p
110
108
109
eqeq12d
⊢
x
=
p
→
a
x
=
b
x
↔
a
p
=
b
p
111
110
rspcv
⊢
p
∈
q
→
∀
x
∈
q
a
x
=
b
x
→
a
p
=
b
p
112
111
a1i
⊢
p
∈
On
∧
q
∈
On
∧
a
:
p
⟶
A
∧
b
:
q
⟶
A
→
p
∈
q
→
∀
x
∈
q
a
x
=
b
x
→
a
p
=
b
p
113
ffvelcdm
⊢
b
:
q
⟶
A
∧
p
∈
q
→
b
p
∈
A
114
fdm
⊢
a
:
p
⟶
A
→
dom
a
=
p
115
eloni
⊢
p
∈
On
→
Ord
p
116
ordirr
⊢
Ord
p
→
¬
p
∈
p
117
115
116
syl
⊢
p
∈
On
→
¬
p
∈
p
118
eleq2
⊢
dom
a
=
p
→
p
∈
dom
a
↔
p
∈
p
119
118
notbid
⊢
dom
a
=
p
→
¬
p
∈
dom
a
↔
¬
p
∈
p
120
119
biimparc
⊢
¬
p
∈
p
∧
dom
a
=
p
→
¬
p
∈
dom
a
121
117
120
sylan
⊢
p
∈
On
∧
dom
a
=
p
→
¬
p
∈
dom
a
122
ndmfv
⊢
¬
p
∈
dom
a
→
a
p
=
∅
123
eqtr2
⊢
a
p
=
∅
∧
a
p
=
b
p
→
∅
=
b
p
124
eleq1
⊢
∅
=
b
p
→
∅
∈
A
↔
b
p
∈
A
125
124
biimprd
⊢
∅
=
b
p
→
b
p
∈
A
→
∅
∈
A
126
123
125
syl
⊢
a
p
=
∅
∧
a
p
=
b
p
→
b
p
∈
A
→
∅
∈
A
127
126
ex
⊢
a
p
=
∅
→
a
p
=
b
p
→
b
p
∈
A
→
∅
∈
A
128
121
122
127
3syl
⊢
p
∈
On
∧
dom
a
=
p
→
a
p
=
b
p
→
b
p
∈
A
→
∅
∈
A
129
128
com23
⊢
p
∈
On
∧
dom
a
=
p
→
b
p
∈
A
→
a
p
=
b
p
→
∅
∈
A
130
114
129
sylan2
⊢
p
∈
On
∧
a
:
p
⟶
A
→
b
p
∈
A
→
a
p
=
b
p
→
∅
∈
A
131
130
adantlr
⊢
p
∈
On
∧
q
∈
On
∧
a
:
p
⟶
A
→
b
p
∈
A
→
a
p
=
b
p
→
∅
∈
A
132
113
131
syl5
⊢
p
∈
On
∧
q
∈
On
∧
a
:
p
⟶
A
→
b
:
q
⟶
A
∧
p
∈
q
→
a
p
=
b
p
→
∅
∈
A
133
132
exp4b
⊢
p
∈
On
∧
q
∈
On
→
a
:
p
⟶
A
→
b
:
q
⟶
A
→
p
∈
q
→
a
p
=
b
p
→
∅
∈
A
134
133
imp32
⊢
p
∈
On
∧
q
∈
On
∧
a
:
p
⟶
A
∧
b
:
q
⟶
A
→
p
∈
q
→
a
p
=
b
p
→
∅
∈
A
135
112
134
syldd
⊢
p
∈
On
∧
q
∈
On
∧
a
:
p
⟶
A
∧
b
:
q
⟶
A
→
p
∈
q
→
∀
x
∈
q
a
x
=
b
x
→
∅
∈
A
136
135
com23
⊢
p
∈
On
∧
q
∈
On
∧
a
:
p
⟶
A
∧
b
:
q
⟶
A
→
∀
x
∈
q
a
x
=
b
x
→
p
∈
q
→
∅
∈
A
137
136
imp
⊢
p
∈
On
∧
q
∈
On
∧
a
:
p
⟶
A
∧
b
:
q
⟶
A
∧
∀
x
∈
q
a
x
=
b
x
→
p
∈
q
→
∅
∈
A
138
4
137
mtoi
⊢
p
∈
On
∧
q
∈
On
∧
a
:
p
⟶
A
∧
b
:
q
⟶
A
∧
∀
x
∈
q
a
x
=
b
x
→
¬
p
∈
q
139
138
ex
⊢
p
∈
On
∧
q
∈
On
∧
a
:
p
⟶
A
∧
b
:
q
⟶
A
→
∀
x
∈
q
a
x
=
b
x
→
¬
p
∈
q
140
107
139
syld
⊢
p
∈
On
∧
q
∈
On
∧
a
:
p
⟶
A
∧
b
:
q
⟶
A
→
∀
x
∈
On
a
x
=
b
x
→
¬
p
∈
q
141
onss
⊢
p
∈
On
→
p
⊆
On
142
ssralv
⊢
p
⊆
On
→
∀
x
∈
On
a
x
=
b
x
→
∀
x
∈
p
a
x
=
b
x
143
141
142
syl
⊢
p
∈
On
→
∀
x
∈
On
a
x
=
b
x
→
∀
x
∈
p
a
x
=
b
x
144
143
ad2antrr
⊢
p
∈
On
∧
q
∈
On
∧
a
:
p
⟶
A
∧
b
:
q
⟶
A
→
∀
x
∈
On
a
x
=
b
x
→
∀
x
∈
p
a
x
=
b
x
145
fveq2
⊢
x
=
q
→
a
x
=
a
q
146
fveq2
⊢
x
=
q
→
b
x
=
b
q
147
145
146
eqeq12d
⊢
x
=
q
→
a
x
=
b
x
↔
a
q
=
b
q
148
147
rspcv
⊢
q
∈
p
→
∀
x
∈
p
a
x
=
b
x
→
a
q
=
b
q
149
148
a1i
⊢
p
∈
On
∧
q
∈
On
∧
a
:
p
⟶
A
∧
b
:
q
⟶
A
→
q
∈
p
→
∀
x
∈
p
a
x
=
b
x
→
a
q
=
b
q
150
ffvelcdm
⊢
a
:
p
⟶
A
∧
q
∈
p
→
a
q
∈
A
151
fdm
⊢
b
:
q
⟶
A
→
dom
b
=
q
152
eloni
⊢
q
∈
On
→
Ord
q
153
ordirr
⊢
Ord
q
→
¬
q
∈
q
154
152
153
syl
⊢
q
∈
On
→
¬
q
∈
q
155
eleq2
⊢
dom
b
=
q
→
q
∈
dom
b
↔
q
∈
q
156
155
notbid
⊢
dom
b
=
q
→
¬
q
∈
dom
b
↔
¬
q
∈
q
157
156
biimparc
⊢
¬
q
∈
q
∧
dom
b
=
q
→
¬
q
∈
dom
b
158
ndmfv
⊢
¬
q
∈
dom
b
→
b
q
=
∅
159
157
158
syl
⊢
¬
q
∈
q
∧
dom
b
=
q
→
b
q
=
∅
160
154
159
sylan
⊢
q
∈
On
∧
dom
b
=
q
→
b
q
=
∅
161
eqtr
⊢
a
q
=
b
q
∧
b
q
=
∅
→
a
q
=
∅
162
eleq1
⊢
a
q
=
∅
→
a
q
∈
A
↔
∅
∈
A
163
162
biimpd
⊢
a
q
=
∅
→
a
q
∈
A
→
∅
∈
A
164
161
163
syl
⊢
a
q
=
b
q
∧
b
q
=
∅
→
a
q
∈
A
→
∅
∈
A
165
164
expcom
⊢
b
q
=
∅
→
a
q
=
b
q
→
a
q
∈
A
→
∅
∈
A
166
165
com23
⊢
b
q
=
∅
→
a
q
∈
A
→
a
q
=
b
q
→
∅
∈
A
167
160
166
syl
⊢
q
∈
On
∧
dom
b
=
q
→
a
q
∈
A
→
a
q
=
b
q
→
∅
∈
A
168
167
adantll
⊢
p
∈
On
∧
q
∈
On
∧
dom
b
=
q
→
a
q
∈
A
→
a
q
=
b
q
→
∅
∈
A
169
151
168
sylan2
⊢
p
∈
On
∧
q
∈
On
∧
b
:
q
⟶
A
→
a
q
∈
A
→
a
q
=
b
q
→
∅
∈
A
170
150
169
syl5
⊢
p
∈
On
∧
q
∈
On
∧
b
:
q
⟶
A
→
a
:
p
⟶
A
∧
q
∈
p
→
a
q
=
b
q
→
∅
∈
A
171
170
exp4b
⊢
p
∈
On
∧
q
∈
On
→
b
:
q
⟶
A
→
a
:
p
⟶
A
→
q
∈
p
→
a
q
=
b
q
→
∅
∈
A
172
171
com23
⊢
p
∈
On
∧
q
∈
On
→
a
:
p
⟶
A
→
b
:
q
⟶
A
→
q
∈
p
→
a
q
=
b
q
→
∅
∈
A
173
172
imp32
⊢
p
∈
On
∧
q
∈
On
∧
a
:
p
⟶
A
∧
b
:
q
⟶
A
→
q
∈
p
→
a
q
=
b
q
→
∅
∈
A
174
149
173
syldd
⊢
p
∈
On
∧
q
∈
On
∧
a
:
p
⟶
A
∧
b
:
q
⟶
A
→
q
∈
p
→
∀
x
∈
p
a
x
=
b
x
→
∅
∈
A
175
174
com23
⊢
p
∈
On
∧
q
∈
On
∧
a
:
p
⟶
A
∧
b
:
q
⟶
A
→
∀
x
∈
p
a
x
=
b
x
→
q
∈
p
→
∅
∈
A
176
175
imp
⊢
p
∈
On
∧
q
∈
On
∧
a
:
p
⟶
A
∧
b
:
q
⟶
A
∧
∀
x
∈
p
a
x
=
b
x
→
q
∈
p
→
∅
∈
A
177
4
176
mtoi
⊢
p
∈
On
∧
q
∈
On
∧
a
:
p
⟶
A
∧
b
:
q
⟶
A
∧
∀
x
∈
p
a
x
=
b
x
→
¬
q
∈
p
178
177
ex
⊢
p
∈
On
∧
q
∈
On
∧
a
:
p
⟶
A
∧
b
:
q
⟶
A
→
∀
x
∈
p
a
x
=
b
x
→
¬
q
∈
p
179
144
178
syld
⊢
p
∈
On
∧
q
∈
On
∧
a
:
p
⟶
A
∧
b
:
q
⟶
A
→
∀
x
∈
On
a
x
=
b
x
→
¬
q
∈
p
180
140
179
jcad
⊢
p
∈
On
∧
q
∈
On
∧
a
:
p
⟶
A
∧
b
:
q
⟶
A
→
∀
x
∈
On
a
x
=
b
x
→
¬
p
∈
q
∧
¬
q
∈
p
181
ordtri3or
⊢
Ord
p
∧
Ord
q
→
p
∈
q
∨
p
=
q
∨
q
∈
p
182
115
152
181
syl2an
⊢
p
∈
On
∧
q
∈
On
→
p
∈
q
∨
p
=
q
∨
q
∈
p
183
182
adantr
⊢
p
∈
On
∧
q
∈
On
∧
a
:
p
⟶
A
∧
b
:
q
⟶
A
→
p
∈
q
∨
p
=
q
∨
q
∈
p
184
3orel13
⊢
¬
p
∈
q
∧
¬
q
∈
p
→
p
∈
q
∨
p
=
q
∨
q
∈
p
→
p
=
q
185
180
183
184
syl6ci
⊢
p
∈
On
∧
q
∈
On
∧
a
:
p
⟶
A
∧
b
:
q
⟶
A
→
∀
x
∈
On
a
x
=
b
x
→
p
=
q
186
185
144
jcad
⊢
p
∈
On
∧
q
∈
On
∧
a
:
p
⟶
A
∧
b
:
q
⟶
A
→
∀
x
∈
On
a
x
=
b
x
→
p
=
q
∧
∀
x
∈
p
a
x
=
b
x
187
ffn
⊢
a
:
p
⟶
A
→
a
Fn
p
188
ffn
⊢
b
:
q
⟶
A
→
b
Fn
q
189
eqfnfv2
⊢
a
Fn
p
∧
b
Fn
q
→
a
=
b
↔
p
=
q
∧
∀
x
∈
p
a
x
=
b
x
190
187
188
189
syl2an
⊢
a
:
p
⟶
A
∧
b
:
q
⟶
A
→
a
=
b
↔
p
=
q
∧
∀
x
∈
p
a
x
=
b
x
191
190
adantl
⊢
p
∈
On
∧
q
∈
On
∧
a
:
p
⟶
A
∧
b
:
q
⟶
A
→
a
=
b
↔
p
=
q
∧
∀
x
∈
p
a
x
=
b
x
192
186
191
sylibrd
⊢
p
∈
On
∧
q
∈
On
∧
a
:
p
⟶
A
∧
b
:
q
⟶
A
→
∀
x
∈
On
a
x
=
b
x
→
a
=
b
193
192
ex
⊢
p
∈
On
∧
q
∈
On
→
a
:
p
⟶
A
∧
b
:
q
⟶
A
→
∀
x
∈
On
a
x
=
b
x
→
a
=
b
194
193
rexlimivv
⊢
∃
p
∈
On
∃
q
∈
On
a
:
p
⟶
A
∧
b
:
q
⟶
A
→
∀
x
∈
On
a
x
=
b
x
→
a
=
b
195
103
194
sylbi
⊢
a
∈
F
∧
b
∈
F
→
∀
x
∈
On
a
x
=
b
x
→
a
=
b
196
86
195
syl5
⊢
a
∈
F
∧
b
∈
F
→
∀
x
∈
On
∀
y
∈
x
a
y
=
b
y
→
a
x
=
b
x
→
a
=
b
197
76
196
sylbird
⊢
a
∈
F
∧
b
∈
F
→
∀
x
∈
On
∀
y
∈
x
a
y
=
b
y
→
¬
a
x
R
b
x
∨
b
x
R
a
x
→
a
=
b
198
65
197
biimtrrid
⊢
a
∈
F
∧
b
∈
F
→
¬
∃
x
∈
On
∀
y
∈
x
a
y
=
b
y
∧
a
x
R
b
x
∨
∃
x
∈
On
∀
y
∈
x
b
y
=
a
y
∧
b
x
R
a
x
→
a
=
b
199
54
198
sylbid
⊢
a
∈
F
∧
b
∈
F
→
¬
a
S
b
∨
b
S
a
→
a
=
b
200
199
orrd
⊢
a
∈
F
∧
b
∈
F
→
a
S
b
∨
b
S
a
∨
a
=
b
201
3orcomb
⊢
a
S
b
∨
a
=
b
∨
b
S
a
↔
a
S
b
∨
b
S
a
∨
a
=
b
202
df-3or
⊢
a
S
b
∨
b
S
a
∨
a
=
b
↔
a
S
b
∨
b
S
a
∨
a
=
b
203
201
202
bitr2i
⊢
a
S
b
∨
b
S
a
∨
a
=
b
↔
a
S
b
∨
a
=
b
∨
b
S
a
204
200
203
sylib
⊢
a
∈
F
∧
b
∈
F
→
a
S
b
∨
a
=
b
∨
b
S
a
205
204
rgen2
⊢
∀
a
∈
F
∀
b
∈
F
a
S
b
∨
a
=
b
∨
b
S
a
206
df-so
⊢
S
Or
F
↔
S
Po
F
∧
∀
a
∈
F
∀
b
∈
F
a
S
b
∨
a
=
b
∨
b
S
a
207
7
205
206
mpbir2an
⊢
S
Or
F