Metamath Proof Explorer


Theorem soseq

Description: A linear ordering of ordinal sequences. (Contributed by Scott Fenton, 8-Jun-2011)

Ref Expression
Hypotheses soseq.1 ROrA
soseq.2 F=f|xOnf:xA
soseq.3 S=fg|fFgFxOnyxfy=gyfxRgx
soseq.4 ¬A
Assertion soseq SOrF

Proof

Step Hyp Ref Expression
1 soseq.1 ROrA
2 soseq.2 F=f|xOnf:xA
3 soseq.3 S=fg|fFgFxOnyxfy=gyfxRgx
4 soseq.4 ¬A
5 sopo ROrARPoA
6 1 5 ax-mp RPoA
7 6 2 3 poseq SPoF
8 eleq1w f=afFaF
9 8 anbi1d f=afFgFaFgF
10 fveq1 f=afy=ay
11 10 eqeq1d f=afy=gyay=gy
12 11 ralbidv f=ayxfy=gyyxay=gy
13 fveq1 f=afx=ax
14 13 breq1d f=afxRgxaxRgx
15 12 14 anbi12d f=ayxfy=gyfxRgxyxay=gyaxRgx
16 15 rexbidv f=axOnyxfy=gyfxRgxxOnyxay=gyaxRgx
17 9 16 anbi12d f=afFgFxOnyxfy=gyfxRgxaFgFxOnyxay=gyaxRgx
18 eleq1w g=bgFbF
19 18 anbi2d g=baFgFaFbF
20 fveq1 g=bgy=by
21 20 eqeq2d g=bay=gyay=by
22 21 ralbidv g=byxay=gyyxay=by
23 fveq1 g=bgx=bx
24 23 breq2d g=baxRgxaxRbx
25 22 24 anbi12d g=byxay=gyaxRgxyxay=byaxRbx
26 25 rexbidv g=bxOnyxay=gyaxRgxxOnyxay=byaxRbx
27 19 26 anbi12d g=baFgFxOnyxay=gyaxRgxaFbFxOnyxay=byaxRbx
28 17 27 3 brabg aFbFaSbaFbFxOnyxay=byaxRbx
29 28 bianabs aFbFaSbxOnyxay=byaxRbx
30 eleq1w f=bfFbF
31 30 anbi1d f=bfFgFbFgF
32 fveq1 f=bfy=by
33 32 eqeq1d f=bfy=gyby=gy
34 33 ralbidv f=byxfy=gyyxby=gy
35 fveq1 f=bfx=bx
36 35 breq1d f=bfxRgxbxRgx
37 34 36 anbi12d f=byxfy=gyfxRgxyxby=gybxRgx
38 37 rexbidv f=bxOnyxfy=gyfxRgxxOnyxby=gybxRgx
39 31 38 anbi12d f=bfFgFxOnyxfy=gyfxRgxbFgFxOnyxby=gybxRgx
40 eleq1w g=agFaF
41 40 anbi2d g=abFgFbFaF
42 fveq1 g=agy=ay
43 42 eqeq2d g=aby=gyby=ay
44 43 ralbidv g=ayxby=gyyxby=ay
45 fveq1 g=agx=ax
46 45 breq2d g=abxRgxbxRax
47 44 46 anbi12d g=ayxby=gybxRgxyxby=aybxRax
48 47 rexbidv g=axOnyxby=gybxRgxxOnyxby=aybxRax
49 41 48 anbi12d g=abFgFxOnyxby=gybxRgxbFaFxOnyxby=aybxRax
50 39 49 3 brabg bFaFbSabFaFxOnyxby=aybxRax
51 50 bianabs bFaFbSaxOnyxby=aybxRax
52 51 ancoms aFbFbSaxOnyxby=aybxRax
53 29 52 orbi12d aFbFaSbbSaxOnyxay=byaxRbxxOnyxby=aybxRax
54 53 notbid aFbF¬aSbbSa¬xOnyxay=byaxRbxxOnyxby=aybxRax
55 ralinexa xOnyxay=by¬axRbxbxRax¬xOnyxay=byaxRbxbxRax
56 andi yxay=byaxRbxbxRaxyxay=byaxRbxyxay=bybxRax
57 eqcom ay=byby=ay
58 57 ralbii yxay=byyxby=ay
59 58 anbi1i yxay=bybxRaxyxby=aybxRax
60 59 orbi2i yxay=byaxRbxyxay=bybxRaxyxay=byaxRbxyxby=aybxRax
61 56 60 bitri yxay=byaxRbxbxRaxyxay=byaxRbxyxby=aybxRax
62 61 rexbii xOnyxay=byaxRbxbxRaxxOnyxay=byaxRbxyxby=aybxRax
63 r19.43 xOnyxay=byaxRbxyxby=aybxRaxxOnyxay=byaxRbxxOnyxby=aybxRax
64 62 63 bitri xOnyxay=byaxRbxbxRaxxOnyxay=byaxRbxxOnyxby=aybxRax
65 55 64 xchbinx xOnyxay=by¬axRbxbxRax¬xOnyxay=byaxRbxxOnyxby=aybxRax
66 feq2 x=yf:xAf:yA
67 66 cbvrexvw xOnf:xAyOnf:yA
68 67 abbii f|xOnf:xA=f|yOnf:yA
69 2 68 eqtri F=f|yOnf:yA
70 69 orderseqlem aFaxA
71 69 orderseqlem bFbxA
72 sotrieq ROrAaxAbxAax=bx¬axRbxbxRax
73 1 72 mpan axAbxAax=bx¬axRbxbxRax
74 70 71 73 syl2an aFbFax=bx¬axRbxbxRax
75 74 imbi2d aFbFyxay=byax=bxyxay=by¬axRbxbxRax
76 75 ralbidv aFbFxOnyxay=byax=bxxOnyxay=by¬axRbxbxRax
77 vex yV
78 fveq2 x=yax=ay
79 fveq2 x=ybx=by
80 78 79 eqeq12d x=yax=bxay=by
81 77 80 sbcie [˙y/x]˙ax=bxay=by
82 81 ralbii yx[˙y/x]˙ax=bxyxay=by
83 82 imbi1i yx[˙y/x]˙ax=bxax=bxyxay=byax=bx
84 83 ralbii xOnyx[˙y/x]˙ax=bxax=bxxOnyxay=byax=bx
85 tfisg xOnyx[˙y/x]˙ax=bxax=bxxOnax=bx
86 84 85 sylbir xOnyxay=byax=bxxOnax=bx
87 vex aV
88 feq1 f=af:xAa:xA
89 88 rexbidv f=axOnf:xAxOna:xA
90 87 89 2 elab2 aFxOna:xA
91 feq2 x=pa:xAa:pA
92 91 cbvrexvw xOna:xApOna:pA
93 90 92 bitri aFpOna:pA
94 vex bV
95 feq1 f=bf:xAb:xA
96 95 rexbidv f=bxOnf:xAxOnb:xA
97 94 96 2 elab2 bFxOnb:xA
98 feq2 x=qb:xAb:qA
99 98 cbvrexvw xOnb:xAqOnb:qA
100 97 99 bitri bFqOnb:qA
101 93 100 anbi12i aFbFpOna:pAqOnb:qA
102 reeanv pOnqOna:pAb:qApOna:pAqOnb:qA
103 101 102 bitr4i aFbFpOnqOna:pAb:qA
104 onss qOnqOn
105 ssralv qOnxOnax=bxxqax=bx
106 104 105 syl qOnxOnax=bxxqax=bx
107 106 ad2antlr pOnqOna:pAb:qAxOnax=bxxqax=bx
108 fveq2 x=pax=ap
109 fveq2 x=pbx=bp
110 108 109 eqeq12d x=pax=bxap=bp
111 110 rspcv pqxqax=bxap=bp
112 111 a1i pOnqOna:pAb:qApqxqax=bxap=bp
113 ffvelcdm b:qApqbpA
114 fdm a:pAdoma=p
115 eloni pOnOrdp
116 ordirr Ordp¬pp
117 115 116 syl pOn¬pp
118 eleq2 doma=ppdomapp
119 118 notbid doma=p¬pdoma¬pp
120 119 biimparc ¬ppdoma=p¬pdoma
121 117 120 sylan pOndoma=p¬pdoma
122 ndmfv ¬pdomaap=
123 eqtr2 ap=ap=bp=bp
124 eleq1 =bpAbpA
125 124 biimprd =bpbpAA
126 123 125 syl ap=ap=bpbpAA
127 126 ex ap=ap=bpbpAA
128 121 122 127 3syl pOndoma=pap=bpbpAA
129 128 com23 pOndoma=pbpAap=bpA
130 114 129 sylan2 pOna:pAbpAap=bpA
131 130 adantlr pOnqOna:pAbpAap=bpA
132 113 131 syl5 pOnqOna:pAb:qApqap=bpA
133 132 exp4b pOnqOna:pAb:qApqap=bpA
134 133 imp32 pOnqOna:pAb:qApqap=bpA
135 112 134 syldd pOnqOna:pAb:qApqxqax=bxA
136 135 com23 pOnqOna:pAb:qAxqax=bxpqA
137 136 imp pOnqOna:pAb:qAxqax=bxpqA
138 4 137 mtoi pOnqOna:pAb:qAxqax=bx¬pq
139 138 ex pOnqOna:pAb:qAxqax=bx¬pq
140 107 139 syld pOnqOna:pAb:qAxOnax=bx¬pq
141 onss pOnpOn
142 ssralv pOnxOnax=bxxpax=bx
143 141 142 syl pOnxOnax=bxxpax=bx
144 143 ad2antrr pOnqOna:pAb:qAxOnax=bxxpax=bx
145 fveq2 x=qax=aq
146 fveq2 x=qbx=bq
147 145 146 eqeq12d x=qax=bxaq=bq
148 147 rspcv qpxpax=bxaq=bq
149 148 a1i pOnqOna:pAb:qAqpxpax=bxaq=bq
150 ffvelcdm a:pAqpaqA
151 fdm b:qAdomb=q
152 eloni qOnOrdq
153 ordirr Ordq¬qq
154 152 153 syl qOn¬qq
155 eleq2 domb=qqdombqq
156 155 notbid domb=q¬qdomb¬qq
157 156 biimparc ¬qqdomb=q¬qdomb
158 ndmfv ¬qdombbq=
159 157 158 syl ¬qqdomb=qbq=
160 154 159 sylan qOndomb=qbq=
161 eqtr aq=bqbq=aq=
162 eleq1 aq=aqAA
163 162 biimpd aq=aqAA
164 161 163 syl aq=bqbq=aqAA
165 164 expcom bq=aq=bqaqAA
166 165 com23 bq=aqAaq=bqA
167 160 166 syl qOndomb=qaqAaq=bqA
168 167 adantll pOnqOndomb=qaqAaq=bqA
169 151 168 sylan2 pOnqOnb:qAaqAaq=bqA
170 150 169 syl5 pOnqOnb:qAa:pAqpaq=bqA
171 170 exp4b pOnqOnb:qAa:pAqpaq=bqA
172 171 com23 pOnqOna:pAb:qAqpaq=bqA
173 172 imp32 pOnqOna:pAb:qAqpaq=bqA
174 149 173 syldd pOnqOna:pAb:qAqpxpax=bxA
175 174 com23 pOnqOna:pAb:qAxpax=bxqpA
176 175 imp pOnqOna:pAb:qAxpax=bxqpA
177 4 176 mtoi pOnqOna:pAb:qAxpax=bx¬qp
178 177 ex pOnqOna:pAb:qAxpax=bx¬qp
179 144 178 syld pOnqOna:pAb:qAxOnax=bx¬qp
180 140 179 jcad pOnqOna:pAb:qAxOnax=bx¬pq¬qp
181 ordtri3or OrdpOrdqpqp=qqp
182 115 152 181 syl2an pOnqOnpqp=qqp
183 182 adantr pOnqOna:pAb:qApqp=qqp
184 3orel13 ¬pq¬qppqp=qqpp=q
185 180 183 184 syl6ci pOnqOna:pAb:qAxOnax=bxp=q
186 185 144 jcad pOnqOna:pAb:qAxOnax=bxp=qxpax=bx
187 ffn a:pAaFnp
188 ffn b:qAbFnq
189 eqfnfv2 aFnpbFnqa=bp=qxpax=bx
190 187 188 189 syl2an a:pAb:qAa=bp=qxpax=bx
191 190 adantl pOnqOna:pAb:qAa=bp=qxpax=bx
192 186 191 sylibrd pOnqOna:pAb:qAxOnax=bxa=b
193 192 ex pOnqOna:pAb:qAxOnax=bxa=b
194 193 rexlimivv pOnqOna:pAb:qAxOnax=bxa=b
195 103 194 sylbi aFbFxOnax=bxa=b
196 86 195 syl5 aFbFxOnyxay=byax=bxa=b
197 76 196 sylbird aFbFxOnyxay=by¬axRbxbxRaxa=b
198 65 197 biimtrrid aFbF¬xOnyxay=byaxRbxxOnyxby=aybxRaxa=b
199 54 198 sylbid aFbF¬aSbbSaa=b
200 199 orrd aFbFaSbbSaa=b
201 3orcomb aSba=bbSaaSbbSaa=b
202 df-3or aSbbSaa=baSbbSaa=b
203 201 202 bitr2i aSbbSaa=baSba=bbSa
204 200 203 sylib aFbFaSba=bbSa
205 204 rgen2 aFbFaSba=bbSa
206 df-so SOrFSPoFaFbFaSba=bbSa
207 7 205 206 mpbir2an SOrF