Metamath Proof Explorer


Theorem tfisg

Description: A closed form of tfis . (Contributed by Scott Fenton, 8-Jun-2011)

Ref Expression
Assertion tfisg x On y x [˙y / x]˙ φ φ x On φ

Proof

Step Hyp Ref Expression
1 ssrab2 x On | φ On
2 dfss3 z x On | φ y z y x On | φ
3 nfcv _ x On
4 3 elrabsf y x On | φ y On [˙y / x]˙ φ
5 4 simprbi y x On | φ [˙y / x]˙ φ
6 5 ralimi y z y x On | φ y z [˙y / x]˙ φ
7 2 6 sylbi z x On | φ y z [˙y / x]˙ φ
8 nfcv _ x z
9 nfsbc1v x [˙y / x]˙ φ
10 8 9 nfralw x y z [˙y / x]˙ φ
11 nfsbc1v x [˙z / x]˙ φ
12 10 11 nfim x y z [˙y / x]˙ φ [˙z / x]˙ φ
13 raleq x = z y x [˙y / x]˙ φ y z [˙y / x]˙ φ
14 sbceq1a x = z φ [˙z / x]˙ φ
15 13 14 imbi12d x = z y x [˙y / x]˙ φ φ y z [˙y / x]˙ φ [˙z / x]˙ φ
16 12 15 rspc z On x On y x [˙y / x]˙ φ φ y z [˙y / x]˙ φ [˙z / x]˙ φ
17 16 impcom x On y x [˙y / x]˙ φ φ z On y z [˙y / x]˙ φ [˙z / x]˙ φ
18 7 17 syl5 x On y x [˙y / x]˙ φ φ z On z x On | φ [˙z / x]˙ φ
19 simpr x On y x [˙y / x]˙ φ φ z On z On
20 18 19 jctild x On y x [˙y / x]˙ φ φ z On z x On | φ z On [˙z / x]˙ φ
21 3 elrabsf z x On | φ z On [˙z / x]˙ φ
22 20 21 syl6ibr x On y x [˙y / x]˙ φ φ z On z x On | φ z x On | φ
23 22 ralrimiva x On y x [˙y / x]˙ φ φ z On z x On | φ z x On | φ
24 tfi x On | φ On z On z x On | φ z x On | φ x On | φ = On
25 1 23 24 sylancr x On y x [˙y / x]˙ φ φ x On | φ = On
26 25 eqcomd x On y x [˙y / x]˙ φ φ On = x On | φ
27 rabid2 On = x On | φ x On φ
28 26 27 sylib x On y x [˙y / x]˙ φ φ x On φ