Step |
Hyp |
Ref |
Expression |
1 |
|
ssrab2 |
⊢ { 𝑥 ∈ On ∣ 𝜑 } ⊆ On |
2 |
|
dfss3 |
⊢ ( 𝑧 ⊆ { 𝑥 ∈ On ∣ 𝜑 } ↔ ∀ 𝑦 ∈ 𝑧 𝑦 ∈ { 𝑥 ∈ On ∣ 𝜑 } ) |
3 |
|
nfcv |
⊢ Ⅎ 𝑥 On |
4 |
3
|
elrabsf |
⊢ ( 𝑦 ∈ { 𝑥 ∈ On ∣ 𝜑 } ↔ ( 𝑦 ∈ On ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ) |
5 |
4
|
simprbi |
⊢ ( 𝑦 ∈ { 𝑥 ∈ On ∣ 𝜑 } → [ 𝑦 / 𝑥 ] 𝜑 ) |
6 |
5
|
ralimi |
⊢ ( ∀ 𝑦 ∈ 𝑧 𝑦 ∈ { 𝑥 ∈ On ∣ 𝜑 } → ∀ 𝑦 ∈ 𝑧 [ 𝑦 / 𝑥 ] 𝜑 ) |
7 |
2 6
|
sylbi |
⊢ ( 𝑧 ⊆ { 𝑥 ∈ On ∣ 𝜑 } → ∀ 𝑦 ∈ 𝑧 [ 𝑦 / 𝑥 ] 𝜑 ) |
8 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑧 |
9 |
|
nfsbc1v |
⊢ Ⅎ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 |
10 |
8 9
|
nfralw |
⊢ Ⅎ 𝑥 ∀ 𝑦 ∈ 𝑧 [ 𝑦 / 𝑥 ] 𝜑 |
11 |
|
nfsbc1v |
⊢ Ⅎ 𝑥 [ 𝑧 / 𝑥 ] 𝜑 |
12 |
10 11
|
nfim |
⊢ Ⅎ 𝑥 ( ∀ 𝑦 ∈ 𝑧 [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑧 / 𝑥 ] 𝜑 ) |
13 |
|
raleq |
⊢ ( 𝑥 = 𝑧 → ( ∀ 𝑦 ∈ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 ↔ ∀ 𝑦 ∈ 𝑧 [ 𝑦 / 𝑥 ] 𝜑 ) ) |
14 |
|
sbceq1a |
⊢ ( 𝑥 = 𝑧 → ( 𝜑 ↔ [ 𝑧 / 𝑥 ] 𝜑 ) ) |
15 |
13 14
|
imbi12d |
⊢ ( 𝑥 = 𝑧 → ( ( ∀ 𝑦 ∈ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 → 𝜑 ) ↔ ( ∀ 𝑦 ∈ 𝑧 [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑧 / 𝑥 ] 𝜑 ) ) ) |
16 |
12 15
|
rspc |
⊢ ( 𝑧 ∈ On → ( ∀ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 → 𝜑 ) → ( ∀ 𝑦 ∈ 𝑧 [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑧 / 𝑥 ] 𝜑 ) ) ) |
17 |
16
|
impcom |
⊢ ( ( ∀ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 → 𝜑 ) ∧ 𝑧 ∈ On ) → ( ∀ 𝑦 ∈ 𝑧 [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑧 / 𝑥 ] 𝜑 ) ) |
18 |
7 17
|
syl5 |
⊢ ( ( ∀ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 → 𝜑 ) ∧ 𝑧 ∈ On ) → ( 𝑧 ⊆ { 𝑥 ∈ On ∣ 𝜑 } → [ 𝑧 / 𝑥 ] 𝜑 ) ) |
19 |
|
simpr |
⊢ ( ( ∀ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 → 𝜑 ) ∧ 𝑧 ∈ On ) → 𝑧 ∈ On ) |
20 |
18 19
|
jctild |
⊢ ( ( ∀ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 → 𝜑 ) ∧ 𝑧 ∈ On ) → ( 𝑧 ⊆ { 𝑥 ∈ On ∣ 𝜑 } → ( 𝑧 ∈ On ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ) ) |
21 |
3
|
elrabsf |
⊢ ( 𝑧 ∈ { 𝑥 ∈ On ∣ 𝜑 } ↔ ( 𝑧 ∈ On ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ) |
22 |
20 21
|
syl6ibr |
⊢ ( ( ∀ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 → 𝜑 ) ∧ 𝑧 ∈ On ) → ( 𝑧 ⊆ { 𝑥 ∈ On ∣ 𝜑 } → 𝑧 ∈ { 𝑥 ∈ On ∣ 𝜑 } ) ) |
23 |
22
|
ralrimiva |
⊢ ( ∀ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 → 𝜑 ) → ∀ 𝑧 ∈ On ( 𝑧 ⊆ { 𝑥 ∈ On ∣ 𝜑 } → 𝑧 ∈ { 𝑥 ∈ On ∣ 𝜑 } ) ) |
24 |
|
tfi |
⊢ ( ( { 𝑥 ∈ On ∣ 𝜑 } ⊆ On ∧ ∀ 𝑧 ∈ On ( 𝑧 ⊆ { 𝑥 ∈ On ∣ 𝜑 } → 𝑧 ∈ { 𝑥 ∈ On ∣ 𝜑 } ) ) → { 𝑥 ∈ On ∣ 𝜑 } = On ) |
25 |
1 23 24
|
sylancr |
⊢ ( ∀ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 → 𝜑 ) → { 𝑥 ∈ On ∣ 𝜑 } = On ) |
26 |
25
|
eqcomd |
⊢ ( ∀ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 → 𝜑 ) → On = { 𝑥 ∈ On ∣ 𝜑 } ) |
27 |
|
rabid2 |
⊢ ( On = { 𝑥 ∈ On ∣ 𝜑 } ↔ ∀ 𝑥 ∈ On 𝜑 ) |
28 |
26 27
|
sylib |
⊢ ( ∀ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 → 𝜑 ) → ∀ 𝑥 ∈ On 𝜑 ) |