Metamath Proof Explorer


Theorem nominmo

Description: A class of surreals has at most one minimum. (Contributed by Scott Fenton, 8-Aug-2024)

Ref Expression
Assertion nominmo ( 𝑆 No → ∃* 𝑥𝑆𝑦𝑆 ¬ 𝑦 <s 𝑥 )

Proof

Step Hyp Ref Expression
1 sltso <s Or No
2 soss ( 𝑆 No → ( <s Or No → <s Or 𝑆 ) )
3 1 2 mpi ( 𝑆 No → <s Or 𝑆 )
4 somo ( <s Or 𝑆 → ∃* 𝑥𝑆𝑦𝑆 ¬ 𝑦 <s 𝑥 )
5 3 4 syl ( 𝑆 No → ∃* 𝑥𝑆𝑦𝑆 ¬ 𝑦 <s 𝑥 )