| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							simpl | 
							⊢ ( ( Ord  𝐵  ∧  𝐴  ∈  𝐵 )  →  Ord  𝐵 )  | 
						
						
							| 2 | 
							
								
							 | 
							ordelord | 
							⊢ ( ( Ord  𝐵  ∧  𝐴  ∈  𝐵 )  →  Ord  𝐴 )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							jca | 
							⊢ ( ( Ord  𝐵  ∧  𝐴  ∈  𝐵 )  →  ( Ord  𝐵  ∧  Ord  𝐴 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							simpl | 
							⊢ ( ( Ord  𝐵  ∧  suc  𝐴  ∈  suc  𝐵 )  →  Ord  𝐵 )  | 
						
						
							| 5 | 
							
								
							 | 
							ordsuc | 
							⊢ ( Ord  𝐵  ↔  Ord  suc  𝐵 )  | 
						
						
							| 6 | 
							
								
							 | 
							ordelord | 
							⊢ ( ( Ord  suc  𝐵  ∧  suc  𝐴  ∈  suc  𝐵 )  →  Ord  suc  𝐴 )  | 
						
						
							| 7 | 
							
								
							 | 
							ordsuc | 
							⊢ ( Ord  𝐴  ↔  Ord  suc  𝐴 )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							sylibr | 
							⊢ ( ( Ord  suc  𝐵  ∧  suc  𝐴  ∈  suc  𝐵 )  →  Ord  𝐴 )  | 
						
						
							| 9 | 
							
								5 8
							 | 
							sylanb | 
							⊢ ( ( Ord  𝐵  ∧  suc  𝐴  ∈  suc  𝐵 )  →  Ord  𝐴 )  | 
						
						
							| 10 | 
							
								4 9
							 | 
							jca | 
							⊢ ( ( Ord  𝐵  ∧  suc  𝐴  ∈  suc  𝐵 )  →  ( Ord  𝐵  ∧  Ord  𝐴 ) )  | 
						
						
							| 11 | 
							
								
							 | 
							ordsseleq | 
							⊢ ( ( Ord  suc  𝐴  ∧  Ord  𝐵 )  →  ( suc  𝐴  ⊆  𝐵  ↔  ( suc  𝐴  ∈  𝐵  ∨  suc  𝐴  =  𝐵 ) ) )  | 
						
						
							| 12 | 
							
								7 11
							 | 
							sylanb | 
							⊢ ( ( Ord  𝐴  ∧  Ord  𝐵 )  →  ( suc  𝐴  ⊆  𝐵  ↔  ( suc  𝐴  ∈  𝐵  ∨  suc  𝐴  =  𝐵 ) ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							ancoms | 
							⊢ ( ( Ord  𝐵  ∧  Ord  𝐴 )  →  ( suc  𝐴  ⊆  𝐵  ↔  ( suc  𝐴  ∈  𝐵  ∨  suc  𝐴  =  𝐵 ) ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							adantl | 
							⊢ ( ( 𝐴  ∈  V  ∧  ( Ord  𝐵  ∧  Ord  𝐴 ) )  →  ( suc  𝐴  ⊆  𝐵  ↔  ( suc  𝐴  ∈  𝐵  ∨  suc  𝐴  =  𝐵 ) ) )  | 
						
						
							| 15 | 
							
								
							 | 
							ordsucss | 
							⊢ ( Ord  𝐵  →  ( 𝐴  ∈  𝐵  →  suc  𝐴  ⊆  𝐵 ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							ad2antrl | 
							⊢ ( ( 𝐴  ∈  V  ∧  ( Ord  𝐵  ∧  Ord  𝐴 ) )  →  ( 𝐴  ∈  𝐵  →  suc  𝐴  ⊆  𝐵 ) )  | 
						
						
							| 17 | 
							
								
							 | 
							sucssel | 
							⊢ ( 𝐴  ∈  V  →  ( suc  𝐴  ⊆  𝐵  →  𝐴  ∈  𝐵 ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							adantr | 
							⊢ ( ( 𝐴  ∈  V  ∧  ( Ord  𝐵  ∧  Ord  𝐴 ) )  →  ( suc  𝐴  ⊆  𝐵  →  𝐴  ∈  𝐵 ) )  | 
						
						
							| 19 | 
							
								16 18
							 | 
							impbid | 
							⊢ ( ( 𝐴  ∈  V  ∧  ( Ord  𝐵  ∧  Ord  𝐴 ) )  →  ( 𝐴  ∈  𝐵  ↔  suc  𝐴  ⊆  𝐵 ) )  | 
						
						
							| 20 | 
							
								
							 | 
							sucexb | 
							⊢ ( 𝐴  ∈  V  ↔  suc  𝐴  ∈  V )  | 
						
						
							| 21 | 
							
								
							 | 
							elsucg | 
							⊢ ( suc  𝐴  ∈  V  →  ( suc  𝐴  ∈  suc  𝐵  ↔  ( suc  𝐴  ∈  𝐵  ∨  suc  𝐴  =  𝐵 ) ) )  | 
						
						
							| 22 | 
							
								20 21
							 | 
							sylbi | 
							⊢ ( 𝐴  ∈  V  →  ( suc  𝐴  ∈  suc  𝐵  ↔  ( suc  𝐴  ∈  𝐵  ∨  suc  𝐴  =  𝐵 ) ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							adantr | 
							⊢ ( ( 𝐴  ∈  V  ∧  ( Ord  𝐵  ∧  Ord  𝐴 ) )  →  ( suc  𝐴  ∈  suc  𝐵  ↔  ( suc  𝐴  ∈  𝐵  ∨  suc  𝐴  =  𝐵 ) ) )  | 
						
						
							| 24 | 
							
								14 19 23
							 | 
							3bitr4d | 
							⊢ ( ( 𝐴  ∈  V  ∧  ( Ord  𝐵  ∧  Ord  𝐴 ) )  →  ( 𝐴  ∈  𝐵  ↔  suc  𝐴  ∈  suc  𝐵 ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							ex | 
							⊢ ( 𝐴  ∈  V  →  ( ( Ord  𝐵  ∧  Ord  𝐴 )  →  ( 𝐴  ∈  𝐵  ↔  suc  𝐴  ∈  suc  𝐵 ) ) )  | 
						
						
							| 26 | 
							
								
							 | 
							elex | 
							⊢ ( 𝐴  ∈  𝐵  →  𝐴  ∈  V )  | 
						
						
							| 27 | 
							
								
							 | 
							elex | 
							⊢ ( suc  𝐴  ∈  suc  𝐵  →  suc  𝐴  ∈  V )  | 
						
						
							| 28 | 
							
								27 20
							 | 
							sylibr | 
							⊢ ( suc  𝐴  ∈  suc  𝐵  →  𝐴  ∈  V )  | 
						
						
							| 29 | 
							
								26 28
							 | 
							pm5.21ni | 
							⊢ ( ¬  𝐴  ∈  V  →  ( 𝐴  ∈  𝐵  ↔  suc  𝐴  ∈  suc  𝐵 ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							a1d | 
							⊢ ( ¬  𝐴  ∈  V  →  ( ( Ord  𝐵  ∧  Ord  𝐴 )  →  ( 𝐴  ∈  𝐵  ↔  suc  𝐴  ∈  suc  𝐵 ) ) )  | 
						
						
							| 31 | 
							
								25 30
							 | 
							pm2.61i | 
							⊢ ( ( Ord  𝐵  ∧  Ord  𝐴 )  →  ( 𝐴  ∈  𝐵  ↔  suc  𝐴  ∈  suc  𝐵 ) )  | 
						
						
							| 32 | 
							
								3 10 31
							 | 
							pm5.21nd | 
							⊢ ( Ord  𝐵  →  ( 𝐴  ∈  𝐵  ↔  suc  𝐴  ∈  suc  𝐵 ) )  |