Metamath Proof Explorer


Theorem ordsucelsuc

Description: Membership is inherited by successors. Generalization of Exercise 9 of TakeutiZaring p. 42. (Contributed by NM, 22-Jun-1998) (Proof shortened by Andrew Salmon, 12-Aug-2011)

Ref Expression
Assertion ordsucelsuc ( Ord 𝐵 → ( 𝐴𝐵 ↔ suc 𝐴 ∈ suc 𝐵 ) )

Proof

Step Hyp Ref Expression
1 simpl ( ( Ord 𝐵𝐴𝐵 ) → Ord 𝐵 )
2 ordelord ( ( Ord 𝐵𝐴𝐵 ) → Ord 𝐴 )
3 1 2 jca ( ( Ord 𝐵𝐴𝐵 ) → ( Ord 𝐵 ∧ Ord 𝐴 ) )
4 simpl ( ( Ord 𝐵 ∧ suc 𝐴 ∈ suc 𝐵 ) → Ord 𝐵 )
5 ordsuc ( Ord 𝐵 ↔ Ord suc 𝐵 )
6 ordelord ( ( Ord suc 𝐵 ∧ suc 𝐴 ∈ suc 𝐵 ) → Ord suc 𝐴 )
7 ordsuc ( Ord 𝐴 ↔ Ord suc 𝐴 )
8 6 7 sylibr ( ( Ord suc 𝐵 ∧ suc 𝐴 ∈ suc 𝐵 ) → Ord 𝐴 )
9 5 8 sylanb ( ( Ord 𝐵 ∧ suc 𝐴 ∈ suc 𝐵 ) → Ord 𝐴 )
10 4 9 jca ( ( Ord 𝐵 ∧ suc 𝐴 ∈ suc 𝐵 ) → ( Ord 𝐵 ∧ Ord 𝐴 ) )
11 ordsseleq ( ( Ord suc 𝐴 ∧ Ord 𝐵 ) → ( suc 𝐴𝐵 ↔ ( suc 𝐴𝐵 ∨ suc 𝐴 = 𝐵 ) ) )
12 7 11 sylanb ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( suc 𝐴𝐵 ↔ ( suc 𝐴𝐵 ∨ suc 𝐴 = 𝐵 ) ) )
13 12 ancoms ( ( Ord 𝐵 ∧ Ord 𝐴 ) → ( suc 𝐴𝐵 ↔ ( suc 𝐴𝐵 ∨ suc 𝐴 = 𝐵 ) ) )
14 13 adantl ( ( 𝐴 ∈ V ∧ ( Ord 𝐵 ∧ Ord 𝐴 ) ) → ( suc 𝐴𝐵 ↔ ( suc 𝐴𝐵 ∨ suc 𝐴 = 𝐵 ) ) )
15 ordsucss ( Ord 𝐵 → ( 𝐴𝐵 → suc 𝐴𝐵 ) )
16 15 ad2antrl ( ( 𝐴 ∈ V ∧ ( Ord 𝐵 ∧ Ord 𝐴 ) ) → ( 𝐴𝐵 → suc 𝐴𝐵 ) )
17 sucssel ( 𝐴 ∈ V → ( suc 𝐴𝐵𝐴𝐵 ) )
18 17 adantr ( ( 𝐴 ∈ V ∧ ( Ord 𝐵 ∧ Ord 𝐴 ) ) → ( suc 𝐴𝐵𝐴𝐵 ) )
19 16 18 impbid ( ( 𝐴 ∈ V ∧ ( Ord 𝐵 ∧ Ord 𝐴 ) ) → ( 𝐴𝐵 ↔ suc 𝐴𝐵 ) )
20 sucexb ( 𝐴 ∈ V ↔ suc 𝐴 ∈ V )
21 elsucg ( suc 𝐴 ∈ V → ( suc 𝐴 ∈ suc 𝐵 ↔ ( suc 𝐴𝐵 ∨ suc 𝐴 = 𝐵 ) ) )
22 20 21 sylbi ( 𝐴 ∈ V → ( suc 𝐴 ∈ suc 𝐵 ↔ ( suc 𝐴𝐵 ∨ suc 𝐴 = 𝐵 ) ) )
23 22 adantr ( ( 𝐴 ∈ V ∧ ( Ord 𝐵 ∧ Ord 𝐴 ) ) → ( suc 𝐴 ∈ suc 𝐵 ↔ ( suc 𝐴𝐵 ∨ suc 𝐴 = 𝐵 ) ) )
24 14 19 23 3bitr4d ( ( 𝐴 ∈ V ∧ ( Ord 𝐵 ∧ Ord 𝐴 ) ) → ( 𝐴𝐵 ↔ suc 𝐴 ∈ suc 𝐵 ) )
25 24 ex ( 𝐴 ∈ V → ( ( Ord 𝐵 ∧ Ord 𝐴 ) → ( 𝐴𝐵 ↔ suc 𝐴 ∈ suc 𝐵 ) ) )
26 elex ( 𝐴𝐵𝐴 ∈ V )
27 elex ( suc 𝐴 ∈ suc 𝐵 → suc 𝐴 ∈ V )
28 27 20 sylibr ( suc 𝐴 ∈ suc 𝐵𝐴 ∈ V )
29 26 28 pm5.21ni ( ¬ 𝐴 ∈ V → ( 𝐴𝐵 ↔ suc 𝐴 ∈ suc 𝐵 ) )
30 29 a1d ( ¬ 𝐴 ∈ V → ( ( Ord 𝐵 ∧ Ord 𝐴 ) → ( 𝐴𝐵 ↔ suc 𝐴 ∈ suc 𝐵 ) ) )
31 25 30 pm2.61i ( ( Ord 𝐵 ∧ Ord 𝐴 ) → ( 𝐴𝐵 ↔ suc 𝐴 ∈ suc 𝐵 ) )
32 3 10 31 pm5.21nd ( Ord 𝐵 → ( 𝐴𝐵 ↔ suc 𝐴 ∈ suc 𝐵 ) )