| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							simpl | 
							 |-  ( ( Ord B /\ A e. B ) -> Ord B )  | 
						
						
							| 2 | 
							
								
							 | 
							ordelord | 
							 |-  ( ( Ord B /\ A e. B ) -> Ord A )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							jca | 
							 |-  ( ( Ord B /\ A e. B ) -> ( Ord B /\ Ord A ) )  | 
						
						
							| 4 | 
							
								
							 | 
							simpl | 
							 |-  ( ( Ord B /\ suc A e. suc B ) -> Ord B )  | 
						
						
							| 5 | 
							
								
							 | 
							ordsuc | 
							 |-  ( Ord B <-> Ord suc B )  | 
						
						
							| 6 | 
							
								
							 | 
							ordelord | 
							 |-  ( ( Ord suc B /\ suc A e. suc B ) -> Ord suc A )  | 
						
						
							| 7 | 
							
								
							 | 
							ordsuc | 
							 |-  ( Ord A <-> Ord suc A )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							sylibr | 
							 |-  ( ( Ord suc B /\ suc A e. suc B ) -> Ord A )  | 
						
						
							| 9 | 
							
								5 8
							 | 
							sylanb | 
							 |-  ( ( Ord B /\ suc A e. suc B ) -> Ord A )  | 
						
						
							| 10 | 
							
								4 9
							 | 
							jca | 
							 |-  ( ( Ord B /\ suc A e. suc B ) -> ( Ord B /\ Ord A ) )  | 
						
						
							| 11 | 
							
								
							 | 
							ordsseleq | 
							 |-  ( ( Ord suc A /\ Ord B ) -> ( suc A C_ B <-> ( suc A e. B \/ suc A = B ) ) )  | 
						
						
							| 12 | 
							
								7 11
							 | 
							sylanb | 
							 |-  ( ( Ord A /\ Ord B ) -> ( suc A C_ B <-> ( suc A e. B \/ suc A = B ) ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							ancoms | 
							 |-  ( ( Ord B /\ Ord A ) -> ( suc A C_ B <-> ( suc A e. B \/ suc A = B ) ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							adantl | 
							 |-  ( ( A e. _V /\ ( Ord B /\ Ord A ) ) -> ( suc A C_ B <-> ( suc A e. B \/ suc A = B ) ) )  | 
						
						
							| 15 | 
							
								
							 | 
							ordsucss | 
							 |-  ( Ord B -> ( A e. B -> suc A C_ B ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							ad2antrl | 
							 |-  ( ( A e. _V /\ ( Ord B /\ Ord A ) ) -> ( A e. B -> suc A C_ B ) )  | 
						
						
							| 17 | 
							
								
							 | 
							sucssel | 
							 |-  ( A e. _V -> ( suc A C_ B -> A e. B ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							adantr | 
							 |-  ( ( A e. _V /\ ( Ord B /\ Ord A ) ) -> ( suc A C_ B -> A e. B ) )  | 
						
						
							| 19 | 
							
								16 18
							 | 
							impbid | 
							 |-  ( ( A e. _V /\ ( Ord B /\ Ord A ) ) -> ( A e. B <-> suc A C_ B ) )  | 
						
						
							| 20 | 
							
								
							 | 
							sucexb | 
							 |-  ( A e. _V <-> suc A e. _V )  | 
						
						
							| 21 | 
							
								
							 | 
							elsucg | 
							 |-  ( suc A e. _V -> ( suc A e. suc B <-> ( suc A e. B \/ suc A = B ) ) )  | 
						
						
							| 22 | 
							
								20 21
							 | 
							sylbi | 
							 |-  ( A e. _V -> ( suc A e. suc B <-> ( suc A e. B \/ suc A = B ) ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							adantr | 
							 |-  ( ( A e. _V /\ ( Ord B /\ Ord A ) ) -> ( suc A e. suc B <-> ( suc A e. B \/ suc A = B ) ) )  | 
						
						
							| 24 | 
							
								14 19 23
							 | 
							3bitr4d | 
							 |-  ( ( A e. _V /\ ( Ord B /\ Ord A ) ) -> ( A e. B <-> suc A e. suc B ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							ex | 
							 |-  ( A e. _V -> ( ( Ord B /\ Ord A ) -> ( A e. B <-> suc A e. suc B ) ) )  | 
						
						
							| 26 | 
							
								
							 | 
							elex | 
							 |-  ( A e. B -> A e. _V )  | 
						
						
							| 27 | 
							
								
							 | 
							elex | 
							 |-  ( suc A e. suc B -> suc A e. _V )  | 
						
						
							| 28 | 
							
								27 20
							 | 
							sylibr | 
							 |-  ( suc A e. suc B -> A e. _V )  | 
						
						
							| 29 | 
							
								26 28
							 | 
							pm5.21ni | 
							 |-  ( -. A e. _V -> ( A e. B <-> suc A e. suc B ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							a1d | 
							 |-  ( -. A e. _V -> ( ( Ord B /\ Ord A ) -> ( A e. B <-> suc A e. suc B ) ) )  | 
						
						
							| 31 | 
							
								25 30
							 | 
							pm2.61i | 
							 |-  ( ( Ord B /\ Ord A ) -> ( A e. B <-> suc A e. suc B ) )  | 
						
						
							| 32 | 
							
								3 10 31
							 | 
							pm5.21nd | 
							 |-  ( Ord B -> ( A e. B <-> suc A e. suc B ) )  |