Description: A successor exists iff its class argument exists. (Contributed by NM, 22-Jun-1998)
Ref | Expression | ||
---|---|---|---|
Assertion | sucexb | |- ( A e. _V <-> suc A e. _V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unexb | |- ( ( A e. _V /\ { A } e. _V ) <-> ( A u. { A } ) e. _V ) |
|
2 | snex | |- { A } e. _V |
|
3 | 2 | biantru | |- ( A e. _V <-> ( A e. _V /\ { A } e. _V ) ) |
4 | df-suc | |- suc A = ( A u. { A } ) |
|
5 | 4 | eleq1i | |- ( suc A e. _V <-> ( A u. { A } ) e. _V ) |
6 | 1 3 5 | 3bitr4i | |- ( A e. _V <-> suc A e. _V ) |