Metamath Proof Explorer


Theorem sucexg

Description: The successor of a set is a set (generalization). (Contributed by NM, 5-Jun-1994)

Ref Expression
Assertion sucexg
|- ( A e. V -> suc A e. _V )

Proof

Step Hyp Ref Expression
1 elex
 |-  ( A e. V -> A e. _V )
2 sucexb
 |-  ( A e. _V <-> suc A e. _V )
3 1 2 sylib
 |-  ( A e. V -> suc A e. _V )