| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ordsucelsuc |
⊢ ( Ord 𝐴 → ( 𝐵 ∈ 𝐴 ↔ suc 𝐵 ∈ suc 𝐴 ) ) |
| 2 |
1
|
notbid |
⊢ ( Ord 𝐴 → ( ¬ 𝐵 ∈ 𝐴 ↔ ¬ suc 𝐵 ∈ suc 𝐴 ) ) |
| 3 |
2
|
adantr |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( ¬ 𝐵 ∈ 𝐴 ↔ ¬ suc 𝐵 ∈ suc 𝐴 ) ) |
| 4 |
|
ordtri1 |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴 ) ) |
| 5 |
|
ordsuc |
⊢ ( Ord 𝐴 ↔ Ord suc 𝐴 ) |
| 6 |
|
ordsuc |
⊢ ( Ord 𝐵 ↔ Ord suc 𝐵 ) |
| 7 |
|
ordtri1 |
⊢ ( ( Ord suc 𝐴 ∧ Ord suc 𝐵 ) → ( suc 𝐴 ⊆ suc 𝐵 ↔ ¬ suc 𝐵 ∈ suc 𝐴 ) ) |
| 8 |
5 6 7
|
syl2anb |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( suc 𝐴 ⊆ suc 𝐵 ↔ ¬ suc 𝐵 ∈ suc 𝐴 ) ) |
| 9 |
3 4 8
|
3bitr4d |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 ⊆ 𝐵 ↔ suc 𝐴 ⊆ suc 𝐵 ) ) |