| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							orduni | 
							⊢ ( Ord  𝐵  →  Ord  ∪  𝐵 )  | 
						
						
							| 2 | 
							
								
							 | 
							ordelord | 
							⊢ ( ( Ord  ∪  𝐵  ∧  𝐴  ∈  ∪  𝐵 )  →  Ord  𝐴 )  | 
						
						
							| 3 | 
							
								2
							 | 
							ex | 
							⊢ ( Ord  ∪  𝐵  →  ( 𝐴  ∈  ∪  𝐵  →  Ord  𝐴 ) )  | 
						
						
							| 4 | 
							
								1 3
							 | 
							syl | 
							⊢ ( Ord  𝐵  →  ( 𝐴  ∈  ∪  𝐵  →  Ord  𝐴 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							ordelord | 
							⊢ ( ( Ord  𝐵  ∧  suc  𝐴  ∈  𝐵 )  →  Ord  suc  𝐴 )  | 
						
						
							| 6 | 
							
								
							 | 
							ordsuc | 
							⊢ ( Ord  𝐴  ↔  Ord  suc  𝐴 )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							sylibr | 
							⊢ ( ( Ord  𝐵  ∧  suc  𝐴  ∈  𝐵 )  →  Ord  𝐴 )  | 
						
						
							| 8 | 
							
								7
							 | 
							ex | 
							⊢ ( Ord  𝐵  →  ( suc  𝐴  ∈  𝐵  →  Ord  𝐴 ) )  | 
						
						
							| 9 | 
							
								
							 | 
							ordsson | 
							⊢ ( Ord  𝐵  →  𝐵  ⊆  On )  | 
						
						
							| 10 | 
							
								
							 | 
							ordunisssuc | 
							⊢ ( ( 𝐵  ⊆  On  ∧  Ord  𝐴 )  →  ( ∪  𝐵  ⊆  𝐴  ↔  𝐵  ⊆  suc  𝐴 ) )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							sylan | 
							⊢ ( ( Ord  𝐵  ∧  Ord  𝐴 )  →  ( ∪  𝐵  ⊆  𝐴  ↔  𝐵  ⊆  suc  𝐴 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							ordtri1 | 
							⊢ ( ( Ord  ∪  𝐵  ∧  Ord  𝐴 )  →  ( ∪  𝐵  ⊆  𝐴  ↔  ¬  𝐴  ∈  ∪  𝐵 ) )  | 
						
						
							| 13 | 
							
								1 12
							 | 
							sylan | 
							⊢ ( ( Ord  𝐵  ∧  Ord  𝐴 )  →  ( ∪  𝐵  ⊆  𝐴  ↔  ¬  𝐴  ∈  ∪  𝐵 ) )  | 
						
						
							| 14 | 
							
								
							 | 
							ordtri1 | 
							⊢ ( ( Ord  𝐵  ∧  Ord  suc  𝐴 )  →  ( 𝐵  ⊆  suc  𝐴  ↔  ¬  suc  𝐴  ∈  𝐵 ) )  | 
						
						
							| 15 | 
							
								6 14
							 | 
							sylan2b | 
							⊢ ( ( Ord  𝐵  ∧  Ord  𝐴 )  →  ( 𝐵  ⊆  suc  𝐴  ↔  ¬  suc  𝐴  ∈  𝐵 ) )  | 
						
						
							| 16 | 
							
								11 13 15
							 | 
							3bitr3d | 
							⊢ ( ( Ord  𝐵  ∧  Ord  𝐴 )  →  ( ¬  𝐴  ∈  ∪  𝐵  ↔  ¬  suc  𝐴  ∈  𝐵 ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							con4bid | 
							⊢ ( ( Ord  𝐵  ∧  Ord  𝐴 )  →  ( 𝐴  ∈  ∪  𝐵  ↔  suc  𝐴  ∈  𝐵 ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							ex | 
							⊢ ( Ord  𝐵  →  ( Ord  𝐴  →  ( 𝐴  ∈  ∪  𝐵  ↔  suc  𝐴  ∈  𝐵 ) ) )  | 
						
						
							| 19 | 
							
								4 8 18
							 | 
							pm5.21ndd | 
							⊢ ( Ord  𝐵  →  ( 𝐴  ∈  ∪  𝐵  ↔  suc  𝐴  ∈  𝐵 ) )  |