Step |
Hyp |
Ref |
Expression |
1 |
|
noetasuplem.1 |
⊢ 𝑆 = if ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 , ( ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { 〈 dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) , 2o 〉 } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) ) |
2 |
|
noetasuplem.2 |
⊢ 𝑍 = ( 𝑆 ∪ ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ) |
3 |
|
ralcom |
⊢ ( ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ↔ ∀ 𝑏 ∈ 𝐵 ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑏 ) |
4 |
|
simplll |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ 𝑏 ∈ 𝐵 ) → 𝐴 ⊆ No ) |
5 |
|
simpllr |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ 𝑏 ∈ 𝐵 ) → 𝐴 ∈ V ) |
6 |
|
simprl |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) → 𝐵 ⊆ No ) |
7 |
6
|
sselda |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ∈ No ) |
8 |
1
|
nosupbnd2 |
⊢ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑏 ∈ No ) → ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑏 ↔ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) |
9 |
4 5 7 8
|
syl3anc |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ 𝑏 ∈ 𝐵 ) → ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑏 ↔ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) |
10 |
|
simpl |
⊢ ( ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) → 𝑏 ∈ 𝐵 ) |
11 |
|
ssel2 |
⊢ ( ( 𝐵 ⊆ No ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ∈ No ) |
12 |
6 10 11
|
syl2an |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) → 𝑏 ∈ No ) |
13 |
|
nodmord |
⊢ ( 𝑏 ∈ No → Ord dom 𝑏 ) |
14 |
|
ordirr |
⊢ ( Ord dom 𝑏 → ¬ dom 𝑏 ∈ dom 𝑏 ) |
15 |
12 13 14
|
3syl |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) → ¬ dom 𝑏 ∈ dom 𝑏 ) |
16 |
|
ssun2 |
⊢ suc ∪ ( bday “ 𝐵 ) ⊆ ( dom 𝑆 ∪ suc ∪ ( bday “ 𝐵 ) ) |
17 |
|
bdayval |
⊢ ( 𝑏 ∈ No → ( bday ‘ 𝑏 ) = dom 𝑏 ) |
18 |
12 17
|
syl |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) → ( bday ‘ 𝑏 ) = dom 𝑏 ) |
19 |
|
bdayfo |
⊢ bday : No –onto→ On |
20 |
|
fofn |
⊢ ( bday : No –onto→ On → bday Fn No ) |
21 |
19 20
|
ax-mp |
⊢ bday Fn No |
22 |
|
fnfvima |
⊢ ( ( bday Fn No ∧ 𝐵 ⊆ No ∧ 𝑏 ∈ 𝐵 ) → ( bday ‘ 𝑏 ) ∈ ( bday “ 𝐵 ) ) |
23 |
21 22
|
mp3an1 |
⊢ ( ( 𝐵 ⊆ No ∧ 𝑏 ∈ 𝐵 ) → ( bday ‘ 𝑏 ) ∈ ( bday “ 𝐵 ) ) |
24 |
6 10 23
|
syl2an |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) → ( bday ‘ 𝑏 ) ∈ ( bday “ 𝐵 ) ) |
25 |
18 24
|
eqeltrrd |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) → dom 𝑏 ∈ ( bday “ 𝐵 ) ) |
26 |
|
elssuni |
⊢ ( dom 𝑏 ∈ ( bday “ 𝐵 ) → dom 𝑏 ⊆ ∪ ( bday “ 𝐵 ) ) |
27 |
25 26
|
syl |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) → dom 𝑏 ⊆ ∪ ( bday “ 𝐵 ) ) |
28 |
|
nodmon |
⊢ ( 𝑏 ∈ No → dom 𝑏 ∈ On ) |
29 |
|
imassrn |
⊢ ( bday “ 𝐵 ) ⊆ ran bday |
30 |
|
forn |
⊢ ( bday : No –onto→ On → ran bday = On ) |
31 |
19 30
|
ax-mp |
⊢ ran bday = On |
32 |
29 31
|
sseqtri |
⊢ ( bday “ 𝐵 ) ⊆ On |
33 |
|
ssorduni |
⊢ ( ( bday “ 𝐵 ) ⊆ On → Ord ∪ ( bday “ 𝐵 ) ) |
34 |
32 33
|
ax-mp |
⊢ Ord ∪ ( bday “ 𝐵 ) |
35 |
|
ordsssuc |
⊢ ( ( dom 𝑏 ∈ On ∧ Ord ∪ ( bday “ 𝐵 ) ) → ( dom 𝑏 ⊆ ∪ ( bday “ 𝐵 ) ↔ dom 𝑏 ∈ suc ∪ ( bday “ 𝐵 ) ) ) |
36 |
34 35
|
mpan2 |
⊢ ( dom 𝑏 ∈ On → ( dom 𝑏 ⊆ ∪ ( bday “ 𝐵 ) ↔ dom 𝑏 ∈ suc ∪ ( bday “ 𝐵 ) ) ) |
37 |
12 28 36
|
3syl |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) → ( dom 𝑏 ⊆ ∪ ( bday “ 𝐵 ) ↔ dom 𝑏 ∈ suc ∪ ( bday “ 𝐵 ) ) ) |
38 |
27 37
|
mpbid |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) → dom 𝑏 ∈ suc ∪ ( bday “ 𝐵 ) ) |
39 |
16 38
|
sselid |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) → dom 𝑏 ∈ ( dom 𝑆 ∪ suc ∪ ( bday “ 𝐵 ) ) ) |
40 |
|
eleq2 |
⊢ ( ( dom 𝑆 ∪ suc ∪ ( bday “ 𝐵 ) ) = dom 𝑏 → ( dom 𝑏 ∈ ( dom 𝑆 ∪ suc ∪ ( bday “ 𝐵 ) ) ↔ dom 𝑏 ∈ dom 𝑏 ) ) |
41 |
39 40
|
syl5ibcom |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) → ( ( dom 𝑆 ∪ suc ∪ ( bday “ 𝐵 ) ) = dom 𝑏 → dom 𝑏 ∈ dom 𝑏 ) ) |
42 |
15 41
|
mtod |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) → ¬ ( dom 𝑆 ∪ suc ∪ ( bday “ 𝐵 ) ) = dom 𝑏 ) |
43 |
2
|
dmeqi |
⊢ dom 𝑍 = dom ( 𝑆 ∪ ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ) |
44 |
|
dmun |
⊢ dom ( 𝑆 ∪ ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ) = ( dom 𝑆 ∪ dom ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ) |
45 |
43 44
|
eqtri |
⊢ dom 𝑍 = ( dom 𝑆 ∪ dom ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ) |
46 |
|
1oex |
⊢ 1o ∈ V |
47 |
46
|
snnz |
⊢ { 1o } ≠ ∅ |
48 |
|
dmxp |
⊢ ( { 1o } ≠ ∅ → dom ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) = ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) ) |
49 |
47 48
|
ax-mp |
⊢ dom ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) = ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) |
50 |
49
|
uneq2i |
⊢ ( dom 𝑆 ∪ dom ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ) = ( dom 𝑆 ∪ ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) ) |
51 |
|
undif2 |
⊢ ( dom 𝑆 ∪ ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) ) = ( dom 𝑆 ∪ suc ∪ ( bday “ 𝐵 ) ) |
52 |
45 50 51
|
3eqtri |
⊢ dom 𝑍 = ( dom 𝑆 ∪ suc ∪ ( bday “ 𝐵 ) ) |
53 |
|
dmeq |
⊢ ( 𝑍 = 𝑏 → dom 𝑍 = dom 𝑏 ) |
54 |
52 53
|
eqtr3id |
⊢ ( 𝑍 = 𝑏 → ( dom 𝑆 ∪ suc ∪ ( bday “ 𝐵 ) ) = dom 𝑏 ) |
55 |
42 54
|
nsyl |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) → ¬ 𝑍 = 𝑏 ) |
56 |
|
df-ne |
⊢ ( 𝑍 ≠ 𝑏 ↔ ¬ 𝑍 = 𝑏 ) |
57 |
|
notnotr |
⊢ ( ¬ ¬ dom ( 𝑏 ↾ dom 𝑆 ) = dom 𝑆 → dom ( 𝑏 ↾ dom 𝑆 ) = dom 𝑆 ) |
58 |
|
simpr |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) → ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) |
59 |
58
|
fvresd |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) → ( ( 𝑍 ↾ dom 𝑆 ) ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) = ( 𝑍 ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) ) |
60 |
2
|
reseq1i |
⊢ ( 𝑍 ↾ dom 𝑆 ) = ( ( 𝑆 ∪ ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ) ↾ dom 𝑆 ) |
61 |
|
resundir |
⊢ ( ( 𝑆 ∪ ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ) ↾ dom 𝑆 ) = ( ( 𝑆 ↾ dom 𝑆 ) ∪ ( ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ↾ dom 𝑆 ) ) |
62 |
|
df-res |
⊢ ( ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ↾ dom 𝑆 ) = ( ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ∩ ( dom 𝑆 × V ) ) |
63 |
|
disjdifr |
⊢ ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) ∩ dom 𝑆 ) = ∅ |
64 |
|
xpdisj1 |
⊢ ( ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) ∩ dom 𝑆 ) = ∅ → ( ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ∩ ( dom 𝑆 × V ) ) = ∅ ) |
65 |
63 64
|
ax-mp |
⊢ ( ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ∩ ( dom 𝑆 × V ) ) = ∅ |
66 |
62 65
|
eqtri |
⊢ ( ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ↾ dom 𝑆 ) = ∅ |
67 |
66
|
uneq2i |
⊢ ( ( 𝑆 ↾ dom 𝑆 ) ∪ ( ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ↾ dom 𝑆 ) ) = ( ( 𝑆 ↾ dom 𝑆 ) ∪ ∅ ) |
68 |
|
un0 |
⊢ ( ( 𝑆 ↾ dom 𝑆 ) ∪ ∅ ) = ( 𝑆 ↾ dom 𝑆 ) |
69 |
67 68
|
eqtri |
⊢ ( ( 𝑆 ↾ dom 𝑆 ) ∪ ( ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ↾ dom 𝑆 ) ) = ( 𝑆 ↾ dom 𝑆 ) |
70 |
60 61 69
|
3eqtri |
⊢ ( 𝑍 ↾ dom 𝑆 ) = ( 𝑆 ↾ dom 𝑆 ) |
71 |
|
simplll |
⊢ ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) → ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ) |
72 |
1
|
nosupno |
⊢ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) → 𝑆 ∈ No ) |
73 |
71 72
|
syl |
⊢ ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) → 𝑆 ∈ No ) |
74 |
73
|
adantr |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) → 𝑆 ∈ No ) |
75 |
|
nofun |
⊢ ( 𝑆 ∈ No → Fun 𝑆 ) |
76 |
74 75
|
syl |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) → Fun 𝑆 ) |
77 |
|
funrel |
⊢ ( Fun 𝑆 → Rel 𝑆 ) |
78 |
|
resdm |
⊢ ( Rel 𝑆 → ( 𝑆 ↾ dom 𝑆 ) = 𝑆 ) |
79 |
76 77 78
|
3syl |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) → ( 𝑆 ↾ dom 𝑆 ) = 𝑆 ) |
80 |
70 79
|
syl5eq |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) → ( 𝑍 ↾ dom 𝑆 ) = 𝑆 ) |
81 |
80
|
fveq1d |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) → ( ( 𝑍 ↾ dom 𝑆 ) ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) = ( 𝑆 ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) ) |
82 |
59 81
|
eqtr3d |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) → ( 𝑍 ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) = ( 𝑆 ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) ) |
83 |
|
simp-4l |
⊢ ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) → 𝐴 ⊆ No ) |
84 |
|
simp-4r |
⊢ ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) → 𝐴 ∈ V ) |
85 |
|
simplrr |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) → 𝐵 ∈ V ) |
86 |
85
|
adantr |
⊢ ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) → 𝐵 ∈ V ) |
87 |
1 2
|
noetasuplem1 |
⊢ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V ) → 𝑍 ∈ No ) |
88 |
83 84 86 87
|
syl3anc |
⊢ ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) → 𝑍 ∈ No ) |
89 |
88
|
adantr |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) → 𝑍 ∈ No ) |
90 |
12
|
adantr |
⊢ ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) → 𝑏 ∈ No ) |
91 |
90
|
adantr |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) → 𝑏 ∈ No ) |
92 |
|
simplr |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) → 𝑍 ≠ 𝑏 ) |
93 |
|
nosepne |
⊢ ( ( 𝑍 ∈ No ∧ 𝑏 ∈ No ∧ 𝑍 ≠ 𝑏 ) → ( 𝑍 ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) ≠ ( 𝑏 ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) ) |
94 |
89 91 92 93
|
syl3anc |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) → ( 𝑍 ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) ≠ ( 𝑏 ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) ) |
95 |
82 94
|
eqnetrrd |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) → ( 𝑆 ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) ≠ ( 𝑏 ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) ) |
96 |
58
|
fvresd |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) → ( ( 𝑏 ↾ dom 𝑆 ) ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) = ( 𝑏 ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) ) |
97 |
95 96
|
neeqtrrd |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) → ( 𝑆 ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) ≠ ( ( 𝑏 ↾ dom 𝑆 ) ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) ) |
98 |
|
fveq2 |
⊢ ( 𝑞 = ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } → ( ( 𝑏 ↾ dom 𝑆 ) ‘ 𝑞 ) = ( ( 𝑏 ↾ dom 𝑆 ) ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) ) |
99 |
|
fveq2 |
⊢ ( 𝑞 = ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } → ( 𝑆 ‘ 𝑞 ) = ( 𝑆 ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) ) |
100 |
98 99
|
neeq12d |
⊢ ( 𝑞 = ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } → ( ( ( 𝑏 ↾ dom 𝑆 ) ‘ 𝑞 ) ≠ ( 𝑆 ‘ 𝑞 ) ↔ ( ( 𝑏 ↾ dom 𝑆 ) ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) ≠ ( 𝑆 ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) ) ) |
101 |
|
df-ne |
⊢ ( ( ( 𝑏 ↾ dom 𝑆 ) ‘ 𝑞 ) ≠ ( 𝑆 ‘ 𝑞 ) ↔ ¬ ( ( 𝑏 ↾ dom 𝑆 ) ‘ 𝑞 ) = ( 𝑆 ‘ 𝑞 ) ) |
102 |
|
necom |
⊢ ( ( ( 𝑏 ↾ dom 𝑆 ) ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) ≠ ( 𝑆 ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) ↔ ( 𝑆 ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) ≠ ( ( 𝑏 ↾ dom 𝑆 ) ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) ) |
103 |
100 101 102
|
3bitr3g |
⊢ ( 𝑞 = ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } → ( ¬ ( ( 𝑏 ↾ dom 𝑆 ) ‘ 𝑞 ) = ( 𝑆 ‘ 𝑞 ) ↔ ( 𝑆 ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) ≠ ( ( 𝑏 ↾ dom 𝑆 ) ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) ) ) |
104 |
103
|
rspcev |
⊢ ( ( ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ∧ ( 𝑆 ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) ≠ ( ( 𝑏 ↾ dom 𝑆 ) ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) ) → ∃ 𝑞 ∈ dom 𝑆 ¬ ( ( 𝑏 ↾ dom 𝑆 ) ‘ 𝑞 ) = ( 𝑆 ‘ 𝑞 ) ) |
105 |
58 97 104
|
syl2anc |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) → ∃ 𝑞 ∈ dom 𝑆 ¬ ( ( 𝑏 ↾ dom 𝑆 ) ‘ 𝑞 ) = ( 𝑆 ‘ 𝑞 ) ) |
106 |
|
rexeq |
⊢ ( dom ( 𝑏 ↾ dom 𝑆 ) = dom 𝑆 → ( ∃ 𝑞 ∈ dom ( 𝑏 ↾ dom 𝑆 ) ¬ ( ( 𝑏 ↾ dom 𝑆 ) ‘ 𝑞 ) = ( 𝑆 ‘ 𝑞 ) ↔ ∃ 𝑞 ∈ dom 𝑆 ¬ ( ( 𝑏 ↾ dom 𝑆 ) ‘ 𝑞 ) = ( 𝑆 ‘ 𝑞 ) ) ) |
107 |
105 106
|
syl5ibrcom |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) → ( dom ( 𝑏 ↾ dom 𝑆 ) = dom 𝑆 → ∃ 𝑞 ∈ dom ( 𝑏 ↾ dom 𝑆 ) ¬ ( ( 𝑏 ↾ dom 𝑆 ) ‘ 𝑞 ) = ( 𝑆 ‘ 𝑞 ) ) ) |
108 |
|
rexnal |
⊢ ( ∃ 𝑞 ∈ dom ( 𝑏 ↾ dom 𝑆 ) ¬ ( ( 𝑏 ↾ dom 𝑆 ) ‘ 𝑞 ) = ( 𝑆 ‘ 𝑞 ) ↔ ¬ ∀ 𝑞 ∈ dom ( 𝑏 ↾ dom 𝑆 ) ( ( 𝑏 ↾ dom 𝑆 ) ‘ 𝑞 ) = ( 𝑆 ‘ 𝑞 ) ) |
109 |
107 108
|
syl6ib |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) → ( dom ( 𝑏 ↾ dom 𝑆 ) = dom 𝑆 → ¬ ∀ 𝑞 ∈ dom ( 𝑏 ↾ dom 𝑆 ) ( ( 𝑏 ↾ dom 𝑆 ) ‘ 𝑞 ) = ( 𝑆 ‘ 𝑞 ) ) ) |
110 |
57 109
|
syl5 |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) → ( ¬ ¬ dom ( 𝑏 ↾ dom 𝑆 ) = dom 𝑆 → ¬ ∀ 𝑞 ∈ dom ( 𝑏 ↾ dom 𝑆 ) ( ( 𝑏 ↾ dom 𝑆 ) ‘ 𝑞 ) = ( 𝑆 ‘ 𝑞 ) ) ) |
111 |
110
|
orrd |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) → ( ¬ dom ( 𝑏 ↾ dom 𝑆 ) = dom 𝑆 ∨ ¬ ∀ 𝑞 ∈ dom ( 𝑏 ↾ dom 𝑆 ) ( ( 𝑏 ↾ dom 𝑆 ) ‘ 𝑞 ) = ( 𝑆 ‘ 𝑞 ) ) ) |
112 |
|
nofun |
⊢ ( 𝑏 ∈ No → Fun 𝑏 ) |
113 |
|
funres |
⊢ ( Fun 𝑏 → Fun ( 𝑏 ↾ dom 𝑆 ) ) |
114 |
91 112 113
|
3syl |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) → Fun ( 𝑏 ↾ dom 𝑆 ) ) |
115 |
|
eqfunfv |
⊢ ( ( Fun ( 𝑏 ↾ dom 𝑆 ) ∧ Fun 𝑆 ) → ( ( 𝑏 ↾ dom 𝑆 ) = 𝑆 ↔ ( dom ( 𝑏 ↾ dom 𝑆 ) = dom 𝑆 ∧ ∀ 𝑞 ∈ dom ( 𝑏 ↾ dom 𝑆 ) ( ( 𝑏 ↾ dom 𝑆 ) ‘ 𝑞 ) = ( 𝑆 ‘ 𝑞 ) ) ) ) |
116 |
114 76 115
|
syl2anc |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) → ( ( 𝑏 ↾ dom 𝑆 ) = 𝑆 ↔ ( dom ( 𝑏 ↾ dom 𝑆 ) = dom 𝑆 ∧ ∀ 𝑞 ∈ dom ( 𝑏 ↾ dom 𝑆 ) ( ( 𝑏 ↾ dom 𝑆 ) ‘ 𝑞 ) = ( 𝑆 ‘ 𝑞 ) ) ) ) |
117 |
|
ianor |
⊢ ( ¬ ( dom ( 𝑏 ↾ dom 𝑆 ) = dom 𝑆 ∧ ∀ 𝑞 ∈ dom ( 𝑏 ↾ dom 𝑆 ) ( ( 𝑏 ↾ dom 𝑆 ) ‘ 𝑞 ) = ( 𝑆 ‘ 𝑞 ) ) ↔ ( ¬ dom ( 𝑏 ↾ dom 𝑆 ) = dom 𝑆 ∨ ¬ ∀ 𝑞 ∈ dom ( 𝑏 ↾ dom 𝑆 ) ( ( 𝑏 ↾ dom 𝑆 ) ‘ 𝑞 ) = ( 𝑆 ‘ 𝑞 ) ) ) |
118 |
117
|
con1bii |
⊢ ( ¬ ( ¬ dom ( 𝑏 ↾ dom 𝑆 ) = dom 𝑆 ∨ ¬ ∀ 𝑞 ∈ dom ( 𝑏 ↾ dom 𝑆 ) ( ( 𝑏 ↾ dom 𝑆 ) ‘ 𝑞 ) = ( 𝑆 ‘ 𝑞 ) ) ↔ ( dom ( 𝑏 ↾ dom 𝑆 ) = dom 𝑆 ∧ ∀ 𝑞 ∈ dom ( 𝑏 ↾ dom 𝑆 ) ( ( 𝑏 ↾ dom 𝑆 ) ‘ 𝑞 ) = ( 𝑆 ‘ 𝑞 ) ) ) |
119 |
116 118
|
bitr4di |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) → ( ( 𝑏 ↾ dom 𝑆 ) = 𝑆 ↔ ¬ ( ¬ dom ( 𝑏 ↾ dom 𝑆 ) = dom 𝑆 ∨ ¬ ∀ 𝑞 ∈ dom ( 𝑏 ↾ dom 𝑆 ) ( ( 𝑏 ↾ dom 𝑆 ) ‘ 𝑞 ) = ( 𝑆 ‘ 𝑞 ) ) ) ) |
120 |
119
|
con2bid |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) → ( ( ¬ dom ( 𝑏 ↾ dom 𝑆 ) = dom 𝑆 ∨ ¬ ∀ 𝑞 ∈ dom ( 𝑏 ↾ dom 𝑆 ) ( ( 𝑏 ↾ dom 𝑆 ) ‘ 𝑞 ) = ( 𝑆 ‘ 𝑞 ) ) ↔ ¬ ( 𝑏 ↾ dom 𝑆 ) = 𝑆 ) ) |
121 |
111 120
|
mpbid |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) → ¬ ( 𝑏 ↾ dom 𝑆 ) = 𝑆 ) |
122 |
121
|
pm2.21d |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) → ( ( 𝑏 ↾ dom 𝑆 ) = 𝑆 → 𝑍 <s 𝑏 ) ) |
123 |
80
|
breq1d |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) → ( ( 𝑍 ↾ dom 𝑆 ) <s ( 𝑏 ↾ dom 𝑆 ) ↔ 𝑆 <s ( 𝑏 ↾ dom 𝑆 ) ) ) |
124 |
|
nodmon |
⊢ ( 𝑆 ∈ No → dom 𝑆 ∈ On ) |
125 |
74 124
|
syl |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) → dom 𝑆 ∈ On ) |
126 |
|
sltres |
⊢ ( ( 𝑍 ∈ No ∧ 𝑏 ∈ No ∧ dom 𝑆 ∈ On ) → ( ( 𝑍 ↾ dom 𝑆 ) <s ( 𝑏 ↾ dom 𝑆 ) → 𝑍 <s 𝑏 ) ) |
127 |
89 91 125 126
|
syl3anc |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) → ( ( 𝑍 ↾ dom 𝑆 ) <s ( 𝑏 ↾ dom 𝑆 ) → 𝑍 <s 𝑏 ) ) |
128 |
123 127
|
sylbird |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) → ( 𝑆 <s ( 𝑏 ↾ dom 𝑆 ) → 𝑍 <s 𝑏 ) ) |
129 |
|
simplrr |
⊢ ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) → ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) |
130 |
129
|
adantr |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) → ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) |
131 |
|
noreson |
⊢ ( ( 𝑏 ∈ No ∧ dom 𝑆 ∈ On ) → ( 𝑏 ↾ dom 𝑆 ) ∈ No ) |
132 |
91 125 131
|
syl2anc |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) → ( 𝑏 ↾ dom 𝑆 ) ∈ No ) |
133 |
|
sltso |
⊢ <s Or No |
134 |
|
sotric |
⊢ ( ( <s Or No ∧ ( ( 𝑏 ↾ dom 𝑆 ) ∈ No ∧ 𝑆 ∈ No ) ) → ( ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ↔ ¬ ( ( 𝑏 ↾ dom 𝑆 ) = 𝑆 ∨ 𝑆 <s ( 𝑏 ↾ dom 𝑆 ) ) ) ) |
135 |
133 134
|
mpan |
⊢ ( ( ( 𝑏 ↾ dom 𝑆 ) ∈ No ∧ 𝑆 ∈ No ) → ( ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ↔ ¬ ( ( 𝑏 ↾ dom 𝑆 ) = 𝑆 ∨ 𝑆 <s ( 𝑏 ↾ dom 𝑆 ) ) ) ) |
136 |
132 74 135
|
syl2anc |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) → ( ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ↔ ¬ ( ( 𝑏 ↾ dom 𝑆 ) = 𝑆 ∨ 𝑆 <s ( 𝑏 ↾ dom 𝑆 ) ) ) ) |
137 |
136
|
con2bid |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) → ( ( ( 𝑏 ↾ dom 𝑆 ) = 𝑆 ∨ 𝑆 <s ( 𝑏 ↾ dom 𝑆 ) ) ↔ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) |
138 |
130 137
|
mpbird |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) → ( ( 𝑏 ↾ dom 𝑆 ) = 𝑆 ∨ 𝑆 <s ( 𝑏 ↾ dom 𝑆 ) ) ) |
139 |
122 128 138
|
mpjaod |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) → 𝑍 <s 𝑏 ) |
140 |
88
|
adantr |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ dom 𝑆 ⊆ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) → 𝑍 ∈ No ) |
141 |
90
|
adantr |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ dom 𝑆 ⊆ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) → 𝑏 ∈ No ) |
142 |
|
simplr |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ dom 𝑆 ⊆ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) → 𝑍 ≠ 𝑏 ) |
143 |
2
|
fveq1i |
⊢ ( 𝑍 ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) = ( ( 𝑆 ∪ ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ) ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) |
144 |
|
simp-4l |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ dom 𝑆 ⊆ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) → ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ) |
145 |
144 72 75
|
3syl |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ dom 𝑆 ⊆ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) → Fun 𝑆 ) |
146 |
|
funfn |
⊢ ( Fun 𝑆 ↔ 𝑆 Fn dom 𝑆 ) |
147 |
145 146
|
sylib |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ dom 𝑆 ⊆ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) → 𝑆 Fn dom 𝑆 ) |
148 |
46
|
fconst |
⊢ ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) : ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) ⟶ { 1o } |
149 |
|
ffn |
⊢ ( ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) : ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) ⟶ { 1o } → ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) Fn ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) ) |
150 |
148 149
|
ax-mp |
⊢ ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) Fn ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) |
151 |
150
|
a1i |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ dom 𝑆 ⊆ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) → ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) Fn ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) ) |
152 |
|
disjdif |
⊢ ( dom 𝑆 ∩ ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) ) = ∅ |
153 |
152
|
a1i |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ dom 𝑆 ⊆ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) → ( dom 𝑆 ∩ ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) ) = ∅ ) |
154 |
|
necom |
⊢ ( ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) ↔ ( 𝑏 ‘ 𝑝 ) ≠ ( 𝑍 ‘ 𝑝 ) ) |
155 |
154
|
rabbii |
⊢ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } = { 𝑝 ∈ On ∣ ( 𝑏 ‘ 𝑝 ) ≠ ( 𝑍 ‘ 𝑝 ) } |
156 |
155
|
inteqi |
⊢ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } = ∩ { 𝑝 ∈ On ∣ ( 𝑏 ‘ 𝑝 ) ≠ ( 𝑍 ‘ 𝑝 ) } |
157 |
142
|
necomd |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ dom 𝑆 ⊆ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) → 𝑏 ≠ 𝑍 ) |
158 |
|
nosepssdm |
⊢ ( ( 𝑏 ∈ No ∧ 𝑍 ∈ No ∧ 𝑏 ≠ 𝑍 ) → ∩ { 𝑝 ∈ On ∣ ( 𝑏 ‘ 𝑝 ) ≠ ( 𝑍 ‘ 𝑝 ) } ⊆ dom 𝑏 ) |
159 |
141 140 157 158
|
syl3anc |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ dom 𝑆 ⊆ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) → ∩ { 𝑝 ∈ On ∣ ( 𝑏 ‘ 𝑝 ) ≠ ( 𝑍 ‘ 𝑝 ) } ⊆ dom 𝑏 ) |
160 |
156 159
|
eqsstrid |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ dom 𝑆 ⊆ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) → ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ⊆ dom 𝑏 ) |
161 |
141 17
|
syl |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ dom 𝑆 ⊆ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) → ( bday ‘ 𝑏 ) = dom 𝑏 ) |
162 |
|
simplrl |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) → 𝐵 ⊆ No ) |
163 |
162
|
adantr |
⊢ ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) → 𝐵 ⊆ No ) |
164 |
163
|
adantr |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ dom 𝑆 ⊆ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) → 𝐵 ⊆ No ) |
165 |
|
simplrl |
⊢ ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) → 𝑏 ∈ 𝐵 ) |
166 |
165
|
adantr |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ dom 𝑆 ⊆ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) → 𝑏 ∈ 𝐵 ) |
167 |
164 166 23
|
syl2anc |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ dom 𝑆 ⊆ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) → ( bday ‘ 𝑏 ) ∈ ( bday “ 𝐵 ) ) |
168 |
161 167
|
eqeltrrd |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ dom 𝑆 ⊆ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) → dom 𝑏 ∈ ( bday “ 𝐵 ) ) |
169 |
168 26
|
syl |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ dom 𝑆 ⊆ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) → dom 𝑏 ⊆ ∪ ( bday “ 𝐵 ) ) |
170 |
141 28 36
|
3syl |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ dom 𝑆 ⊆ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) → ( dom 𝑏 ⊆ ∪ ( bday “ 𝐵 ) ↔ dom 𝑏 ∈ suc ∪ ( bday “ 𝐵 ) ) ) |
171 |
169 170
|
mpbid |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ dom 𝑆 ⊆ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) → dom 𝑏 ∈ suc ∪ ( bday “ 𝐵 ) ) |
172 |
|
nosepon |
⊢ ( ( 𝑍 ∈ No ∧ 𝑏 ∈ No ∧ 𝑍 ≠ 𝑏 ) → ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ On ) |
173 |
140 141 142 172
|
syl3anc |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ dom 𝑆 ⊆ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) → ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ On ) |
174 |
|
eloni |
⊢ ( ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ On → Ord ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) |
175 |
|
ordsuc |
⊢ ( Ord ∪ ( bday “ 𝐵 ) ↔ Ord suc ∪ ( bday “ 𝐵 ) ) |
176 |
34 175
|
mpbi |
⊢ Ord suc ∪ ( bday “ 𝐵 ) |
177 |
|
ordtr2 |
⊢ ( ( Ord ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∧ Ord suc ∪ ( bday “ 𝐵 ) ) → ( ( ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ⊆ dom 𝑏 ∧ dom 𝑏 ∈ suc ∪ ( bday “ 𝐵 ) ) → ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ suc ∪ ( bday “ 𝐵 ) ) ) |
178 |
176 177
|
mpan2 |
⊢ ( Ord ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } → ( ( ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ⊆ dom 𝑏 ∧ dom 𝑏 ∈ suc ∪ ( bday “ 𝐵 ) ) → ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ suc ∪ ( bday “ 𝐵 ) ) ) |
179 |
173 174 178
|
3syl |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ dom 𝑆 ⊆ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) → ( ( ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ⊆ dom 𝑏 ∧ dom 𝑏 ∈ suc ∪ ( bday “ 𝐵 ) ) → ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ suc ∪ ( bday “ 𝐵 ) ) ) |
180 |
160 171 179
|
mp2and |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ dom 𝑆 ⊆ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) → ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ suc ∪ ( bday “ 𝐵 ) ) |
181 |
|
simpr |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ dom 𝑆 ⊆ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) → dom 𝑆 ⊆ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) |
182 |
144 72 124
|
3syl |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ dom 𝑆 ⊆ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) → dom 𝑆 ∈ On ) |
183 |
|
ontri1 |
⊢ ( ( dom 𝑆 ∈ On ∧ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ On ) → ( dom 𝑆 ⊆ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ↔ ¬ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) ) |
184 |
182 173 183
|
syl2anc |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ dom 𝑆 ⊆ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) → ( dom 𝑆 ⊆ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ↔ ¬ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) ) |
185 |
181 184
|
mpbid |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ dom 𝑆 ⊆ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) → ¬ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ) |
186 |
180 185
|
eldifd |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ dom 𝑆 ⊆ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) → ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) ) |
187 |
|
fvun2 |
⊢ ( ( 𝑆 Fn dom 𝑆 ∧ ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) Fn ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) ∧ ( ( dom 𝑆 ∩ ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) ) = ∅ ∧ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) ) ) → ( ( 𝑆 ∪ ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ) ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) = ( ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) ) |
188 |
147 151 153 186 187
|
syl112anc |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ dom 𝑆 ⊆ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) → ( ( 𝑆 ∪ ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ) ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) = ( ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) ) |
189 |
143 188
|
syl5eq |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ dom 𝑆 ⊆ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) → ( 𝑍 ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) = ( ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) ) |
190 |
46
|
fvconst2 |
⊢ ( ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) → ( ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) = 1o ) |
191 |
186 190
|
syl |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ dom 𝑆 ⊆ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) → ( ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) = 1o ) |
192 |
189 191
|
eqtrd |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ dom 𝑆 ⊆ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) → ( 𝑍 ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) = 1o ) |
193 |
|
nosep1o |
⊢ ( ( ( 𝑍 ∈ No ∧ 𝑏 ∈ No ∧ 𝑍 ≠ 𝑏 ) ∧ ( 𝑍 ‘ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) = 1o ) → 𝑍 <s 𝑏 ) |
194 |
140 141 142 192 193
|
syl31anc |
⊢ ( ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) ∧ dom 𝑆 ⊆ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) → 𝑍 <s 𝑏 ) |
195 |
|
simpr |
⊢ ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) → 𝑍 ≠ 𝑏 ) |
196 |
88 90 195 172
|
syl3anc |
⊢ ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) → ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ On ) |
197 |
196 174
|
syl |
⊢ ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) → Ord ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) |
198 |
|
nodmord |
⊢ ( 𝑆 ∈ No → Ord dom 𝑆 ) |
199 |
71 72 198
|
3syl |
⊢ ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) → Ord dom 𝑆 ) |
200 |
|
ordtri2or |
⊢ ( ( Ord ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∧ Ord dom 𝑆 ) → ( ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ∨ dom 𝑆 ⊆ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) ) |
201 |
197 199 200
|
syl2anc |
⊢ ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) → ( ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ∈ dom 𝑆 ∨ dom 𝑆 ⊆ ∩ { 𝑝 ∈ On ∣ ( 𝑍 ‘ 𝑝 ) ≠ ( 𝑏 ‘ 𝑝 ) } ) ) |
202 |
139 194 201
|
mpjaodan |
⊢ ( ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) ∧ 𝑍 ≠ 𝑏 ) → 𝑍 <s 𝑏 ) |
203 |
202
|
ex |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) → ( 𝑍 ≠ 𝑏 → 𝑍 <s 𝑏 ) ) |
204 |
56 203
|
syl5bir |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) → ( ¬ 𝑍 = 𝑏 → 𝑍 <s 𝑏 ) ) |
205 |
55 204
|
mpd |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 ) ) → 𝑍 <s 𝑏 ) |
206 |
205
|
expr |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ 𝑏 ∈ 𝐵 ) → ( ¬ ( 𝑏 ↾ dom 𝑆 ) <s 𝑆 → 𝑍 <s 𝑏 ) ) |
207 |
9 206
|
sylbid |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) ∧ 𝑏 ∈ 𝐵 ) → ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑏 → 𝑍 <s 𝑏 ) ) |
208 |
207
|
ralimdva |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) → ( ∀ 𝑏 ∈ 𝐵 ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑏 → ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ) |
209 |
3 208
|
syl5bi |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ) → ( ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 → ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ) |
210 |
209
|
3impia |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 𝑎 <s 𝑏 ) → ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) |