| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ordelord | ⊢ ( ( Ord  𝐶  ∧  𝐵  ∈  𝐶 )  →  Ord  𝐵 ) | 
						
							| 2 | 1 | ex | ⊢ ( Ord  𝐶  →  ( 𝐵  ∈  𝐶  →  Ord  𝐵 ) ) | 
						
							| 3 | 2 | ancld | ⊢ ( Ord  𝐶  →  ( 𝐵  ∈  𝐶  →  ( 𝐵  ∈  𝐶  ∧  Ord  𝐵 ) ) ) | 
						
							| 4 | 3 | anc2li | ⊢ ( Ord  𝐶  →  ( 𝐵  ∈  𝐶  →  ( Ord  𝐶  ∧  ( 𝐵  ∈  𝐶  ∧  Ord  𝐵 ) ) ) ) | 
						
							| 5 |  | ordelpss | ⊢ ( ( Ord  𝐵  ∧  Ord  𝐶 )  →  ( 𝐵  ∈  𝐶  ↔  𝐵  ⊊  𝐶 ) ) | 
						
							| 6 |  | sspsstr | ⊢ ( ( 𝐴  ⊆  𝐵  ∧  𝐵  ⊊  𝐶 )  →  𝐴  ⊊  𝐶 ) | 
						
							| 7 | 6 | expcom | ⊢ ( 𝐵  ⊊  𝐶  →  ( 𝐴  ⊆  𝐵  →  𝐴  ⊊  𝐶 ) ) | 
						
							| 8 | 5 7 | biimtrdi | ⊢ ( ( Ord  𝐵  ∧  Ord  𝐶 )  →  ( 𝐵  ∈  𝐶  →  ( 𝐴  ⊆  𝐵  →  𝐴  ⊊  𝐶 ) ) ) | 
						
							| 9 | 8 | expcom | ⊢ ( Ord  𝐶  →  ( Ord  𝐵  →  ( 𝐵  ∈  𝐶  →  ( 𝐴  ⊆  𝐵  →  𝐴  ⊊  𝐶 ) ) ) ) | 
						
							| 10 | 9 | com23 | ⊢ ( Ord  𝐶  →  ( 𝐵  ∈  𝐶  →  ( Ord  𝐵  →  ( 𝐴  ⊆  𝐵  →  𝐴  ⊊  𝐶 ) ) ) ) | 
						
							| 11 | 10 | imp32 | ⊢ ( ( Ord  𝐶  ∧  ( 𝐵  ∈  𝐶  ∧  Ord  𝐵 ) )  →  ( 𝐴  ⊆  𝐵  →  𝐴  ⊊  𝐶 ) ) | 
						
							| 12 | 11 | com12 | ⊢ ( 𝐴  ⊆  𝐵  →  ( ( Ord  𝐶  ∧  ( 𝐵  ∈  𝐶  ∧  Ord  𝐵 ) )  →  𝐴  ⊊  𝐶 ) ) | 
						
							| 13 | 4 12 | syl9 | ⊢ ( Ord  𝐶  →  ( 𝐴  ⊆  𝐵  →  ( 𝐵  ∈  𝐶  →  𝐴  ⊊  𝐶 ) ) ) | 
						
							| 14 | 13 | impd | ⊢ ( Ord  𝐶  →  ( ( 𝐴  ⊆  𝐵  ∧  𝐵  ∈  𝐶 )  →  𝐴  ⊊  𝐶 ) ) | 
						
							| 15 | 14 | adantl | ⊢ ( ( Ord  𝐴  ∧  Ord  𝐶 )  →  ( ( 𝐴  ⊆  𝐵  ∧  𝐵  ∈  𝐶 )  →  𝐴  ⊊  𝐶 ) ) | 
						
							| 16 |  | ordelpss | ⊢ ( ( Ord  𝐴  ∧  Ord  𝐶 )  →  ( 𝐴  ∈  𝐶  ↔  𝐴  ⊊  𝐶 ) ) | 
						
							| 17 | 15 16 | sylibrd | ⊢ ( ( Ord  𝐴  ∧  Ord  𝐶 )  →  ( ( 𝐴  ⊆  𝐵  ∧  𝐵  ∈  𝐶 )  →  𝐴  ∈  𝐶 ) ) |