| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ordelord |  |-  ( ( Ord C /\ B e. C ) -> Ord B ) | 
						
							| 2 | 1 | ex |  |-  ( Ord C -> ( B e. C -> Ord B ) ) | 
						
							| 3 | 2 | ancld |  |-  ( Ord C -> ( B e. C -> ( B e. C /\ Ord B ) ) ) | 
						
							| 4 | 3 | anc2li |  |-  ( Ord C -> ( B e. C -> ( Ord C /\ ( B e. C /\ Ord B ) ) ) ) | 
						
							| 5 |  | ordelpss |  |-  ( ( Ord B /\ Ord C ) -> ( B e. C <-> B C. C ) ) | 
						
							| 6 |  | sspsstr |  |-  ( ( A C_ B /\ B C. C ) -> A C. C ) | 
						
							| 7 | 6 | expcom |  |-  ( B C. C -> ( A C_ B -> A C. C ) ) | 
						
							| 8 | 5 7 | biimtrdi |  |-  ( ( Ord B /\ Ord C ) -> ( B e. C -> ( A C_ B -> A C. C ) ) ) | 
						
							| 9 | 8 | expcom |  |-  ( Ord C -> ( Ord B -> ( B e. C -> ( A C_ B -> A C. C ) ) ) ) | 
						
							| 10 | 9 | com23 |  |-  ( Ord C -> ( B e. C -> ( Ord B -> ( A C_ B -> A C. C ) ) ) ) | 
						
							| 11 | 10 | imp32 |  |-  ( ( Ord C /\ ( B e. C /\ Ord B ) ) -> ( A C_ B -> A C. C ) ) | 
						
							| 12 | 11 | com12 |  |-  ( A C_ B -> ( ( Ord C /\ ( B e. C /\ Ord B ) ) -> A C. C ) ) | 
						
							| 13 | 4 12 | syl9 |  |-  ( Ord C -> ( A C_ B -> ( B e. C -> A C. C ) ) ) | 
						
							| 14 | 13 | impd |  |-  ( Ord C -> ( ( A C_ B /\ B e. C ) -> A C. C ) ) | 
						
							| 15 | 14 | adantl |  |-  ( ( Ord A /\ Ord C ) -> ( ( A C_ B /\ B e. C ) -> A C. C ) ) | 
						
							| 16 |  | ordelpss |  |-  ( ( Ord A /\ Ord C ) -> ( A e. C <-> A C. C ) ) | 
						
							| 17 | 15 16 | sylibrd |  |-  ( ( Ord A /\ Ord C ) -> ( ( A C_ B /\ B e. C ) -> A e. C ) ) |