Description: Transitive law for subclass and proper subclass. (Contributed by NM, 3-Apr-1996)
Ref | Expression | ||
---|---|---|---|
Assertion | sspsstr | |- ( ( A C_ B /\ B C. C ) -> A C. C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sspss | |- ( A C_ B <-> ( A C. B \/ A = B ) ) |
|
2 | psstr | |- ( ( A C. B /\ B C. C ) -> A C. C ) |
|
3 | 2 | ex | |- ( A C. B -> ( B C. C -> A C. C ) ) |
4 | psseq1 | |- ( A = B -> ( A C. C <-> B C. C ) ) |
|
5 | 4 | biimprd | |- ( A = B -> ( B C. C -> A C. C ) ) |
6 | 3 5 | jaoi | |- ( ( A C. B \/ A = B ) -> ( B C. C -> A C. C ) ) |
7 | 6 | imp | |- ( ( ( A C. B \/ A = B ) /\ B C. C ) -> A C. C ) |
8 | 1 7 | sylanb | |- ( ( A C_ B /\ B C. C ) -> A C. C ) |