Metamath Proof Explorer


Theorem sspsstr

Description: Transitive law for subclass and proper subclass. (Contributed by NM, 3-Apr-1996)

Ref Expression
Assertion sspsstr
|- ( ( A C_ B /\ B C. C ) -> A C. C )

Proof

Step Hyp Ref Expression
1 sspss
 |-  ( A C_ B <-> ( A C. B \/ A = B ) )
2 psstr
 |-  ( ( A C. B /\ B C. C ) -> A C. C )
3 2 ex
 |-  ( A C. B -> ( B C. C -> A C. C ) )
4 psseq1
 |-  ( A = B -> ( A C. C <-> B C. C ) )
5 4 biimprd
 |-  ( A = B -> ( B C. C -> A C. C ) )
6 3 5 jaoi
 |-  ( ( A C. B \/ A = B ) -> ( B C. C -> A C. C ) )
7 6 imp
 |-  ( ( ( A C. B \/ A = B ) /\ B C. C ) -> A C. C )
8 1 7 sylanb
 |-  ( ( A C_ B /\ B C. C ) -> A C. C )