Metamath Proof Explorer


Theorem ordtr2

Description: Transitive law for ordinal classes. (Contributed by NM, 12-Dec-2004) (Proof shortened by Andrew Salmon, 25-Jul-2011)

Ref Expression
Assertion ordtr2 OrdAOrdCABBCAC

Proof

Step Hyp Ref Expression
1 ordelord OrdCBCOrdB
2 1 ex OrdCBCOrdB
3 2 ancld OrdCBCBCOrdB
4 3 anc2li OrdCBCOrdCBCOrdB
5 ordelpss OrdBOrdCBCBC
6 sspsstr ABBCAC
7 6 expcom BCABAC
8 5 7 biimtrdi OrdBOrdCBCABAC
9 8 expcom OrdCOrdBBCABAC
10 9 com23 OrdCBCOrdBABAC
11 10 imp32 OrdCBCOrdBABAC
12 11 com12 ABOrdCBCOrdBAC
13 4 12 syl9 OrdCABBCAC
14 13 impd OrdCABBCAC
15 14 adantl OrdAOrdCABBCAC
16 ordelpss OrdAOrdCACAC
17 15 16 sylibrd OrdAOrdCABBCAC