| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nelss | ⊢ ( ( 𝐴  ∈  𝐵  ∧  ¬  𝐴  ∈  𝐶 )  →  ¬  𝐵  ⊆  𝐶 ) | 
						
							| 2 | 1 | adantl | ⊢ ( ( ( Ord  𝐵  ∧  Ord  𝐶 )  ∧  ( 𝐴  ∈  𝐵  ∧  ¬  𝐴  ∈  𝐶 ) )  →  ¬  𝐵  ⊆  𝐶 ) | 
						
							| 3 |  | ordtri1 | ⊢ ( ( Ord  𝐵  ∧  Ord  𝐶 )  →  ( 𝐵  ⊆  𝐶  ↔  ¬  𝐶  ∈  𝐵 ) ) | 
						
							| 4 | 3 | con2bid | ⊢ ( ( Ord  𝐵  ∧  Ord  𝐶 )  →  ( 𝐶  ∈  𝐵  ↔  ¬  𝐵  ⊆  𝐶 ) ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( ( Ord  𝐵  ∧  Ord  𝐶 )  ∧  ( 𝐴  ∈  𝐵  ∧  ¬  𝐴  ∈  𝐶 ) )  →  ( 𝐶  ∈  𝐵  ↔  ¬  𝐵  ⊆  𝐶 ) ) | 
						
							| 6 | 2 5 | mpbird | ⊢ ( ( ( Ord  𝐵  ∧  Ord  𝐶 )  ∧  ( 𝐴  ∈  𝐵  ∧  ¬  𝐴  ∈  𝐶 ) )  →  𝐶  ∈  𝐵 ) | 
						
							| 7 | 6 | expr | ⊢ ( ( ( Ord  𝐵  ∧  Ord  𝐶 )  ∧  𝐴  ∈  𝐵 )  →  ( ¬  𝐴  ∈  𝐶  →  𝐶  ∈  𝐵 ) ) | 
						
							| 8 | 7 | orrd | ⊢ ( ( ( Ord  𝐵  ∧  Ord  𝐶 )  ∧  𝐴  ∈  𝐵 )  →  ( 𝐴  ∈  𝐶  ∨  𝐶  ∈  𝐵 ) ) | 
						
							| 9 | 8 | ex | ⊢ ( ( Ord  𝐵  ∧  Ord  𝐶 )  →  ( 𝐴  ∈  𝐵  →  ( 𝐴  ∈  𝐶  ∨  𝐶  ∈  𝐵 ) ) ) |