Step |
Hyp |
Ref |
Expression |
1 |
|
nosepne |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵 ) → ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) ≠ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) ) |
2 |
1
|
neneqd |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵 ) → ¬ ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) ) |
3 |
|
nodmord |
⊢ ( 𝐴 ∈ No → Ord dom 𝐴 ) |
4 |
3
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵 ) → Ord dom 𝐴 ) |
5 |
|
ordn2lp |
⊢ ( Ord dom 𝐴 → ¬ ( dom 𝐴 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ∧ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ∈ dom 𝐴 ) ) |
6 |
4 5
|
syl |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵 ) → ¬ ( dom 𝐴 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ∧ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ∈ dom 𝐴 ) ) |
7 |
|
imnan |
⊢ ( ( dom 𝐴 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } → ¬ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ∈ dom 𝐴 ) ↔ ¬ ( dom 𝐴 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ∧ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ∈ dom 𝐴 ) ) |
8 |
6 7
|
sylibr |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵 ) → ( dom 𝐴 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } → ¬ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ∈ dom 𝐴 ) ) |
9 |
8
|
imp |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵 ) ∧ dom 𝐴 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) → ¬ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ∈ dom 𝐴 ) |
10 |
|
ndmfv |
⊢ ( ¬ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ∈ dom 𝐴 → ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = ∅ ) |
11 |
9 10
|
syl |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵 ) ∧ dom 𝐴 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) → ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = ∅ ) |
12 |
|
nosepeq |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵 ) ∧ dom 𝐴 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) → ( 𝐴 ‘ dom 𝐴 ) = ( 𝐵 ‘ dom 𝐴 ) ) |
13 |
|
simpl1 |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵 ) ∧ dom 𝐴 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) → 𝐴 ∈ No ) |
14 |
13 3
|
syl |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵 ) ∧ dom 𝐴 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) → Ord dom 𝐴 ) |
15 |
|
ordirr |
⊢ ( Ord dom 𝐴 → ¬ dom 𝐴 ∈ dom 𝐴 ) |
16 |
|
ndmfv |
⊢ ( ¬ dom 𝐴 ∈ dom 𝐴 → ( 𝐴 ‘ dom 𝐴 ) = ∅ ) |
17 |
14 15 16
|
3syl |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵 ) ∧ dom 𝐴 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) → ( 𝐴 ‘ dom 𝐴 ) = ∅ ) |
18 |
17
|
eqeq1d |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵 ) ∧ dom 𝐴 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) → ( ( 𝐴 ‘ dom 𝐴 ) = ( 𝐵 ‘ dom 𝐴 ) ↔ ∅ = ( 𝐵 ‘ dom 𝐴 ) ) ) |
19 |
|
eqcom |
⊢ ( ∅ = ( 𝐵 ‘ dom 𝐴 ) ↔ ( 𝐵 ‘ dom 𝐴 ) = ∅ ) |
20 |
18 19
|
bitrdi |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵 ) ∧ dom 𝐴 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) → ( ( 𝐴 ‘ dom 𝐴 ) = ( 𝐵 ‘ dom 𝐴 ) ↔ ( 𝐵 ‘ dom 𝐴 ) = ∅ ) ) |
21 |
|
simpl2 |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵 ) ∧ dom 𝐴 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) → 𝐵 ∈ No ) |
22 |
|
nofun |
⊢ ( 𝐵 ∈ No → Fun 𝐵 ) |
23 |
21 22
|
syl |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵 ) ∧ dom 𝐴 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) → Fun 𝐵 ) |
24 |
|
nosgnn0 |
⊢ ¬ ∅ ∈ { 1o , 2o } |
25 |
|
norn |
⊢ ( 𝐵 ∈ No → ran 𝐵 ⊆ { 1o , 2o } ) |
26 |
21 25
|
syl |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵 ) ∧ dom 𝐴 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) → ran 𝐵 ⊆ { 1o , 2o } ) |
27 |
26
|
sseld |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵 ) ∧ dom 𝐴 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) → ( ∅ ∈ ran 𝐵 → ∅ ∈ { 1o , 2o } ) ) |
28 |
24 27
|
mtoi |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵 ) ∧ dom 𝐴 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) → ¬ ∅ ∈ ran 𝐵 ) |
29 |
|
funeldmb |
⊢ ( ( Fun 𝐵 ∧ ¬ ∅ ∈ ran 𝐵 ) → ( dom 𝐴 ∈ dom 𝐵 ↔ ( 𝐵 ‘ dom 𝐴 ) ≠ ∅ ) ) |
30 |
23 28 29
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵 ) ∧ dom 𝐴 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) → ( dom 𝐴 ∈ dom 𝐵 ↔ ( 𝐵 ‘ dom 𝐴 ) ≠ ∅ ) ) |
31 |
30
|
necon2bbid |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵 ) ∧ dom 𝐴 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) → ( ( 𝐵 ‘ dom 𝐴 ) = ∅ ↔ ¬ dom 𝐴 ∈ dom 𝐵 ) ) |
32 |
|
nodmord |
⊢ ( 𝐵 ∈ No → Ord dom 𝐵 ) |
33 |
32
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵 ) → Ord dom 𝐵 ) |
34 |
|
ordtr1 |
⊢ ( Ord dom 𝐵 → ( ( dom 𝐴 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ∧ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ∈ dom 𝐵 ) → dom 𝐴 ∈ dom 𝐵 ) ) |
35 |
33 34
|
syl |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵 ) → ( ( dom 𝐴 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ∧ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ∈ dom 𝐵 ) → dom 𝐴 ∈ dom 𝐵 ) ) |
36 |
35
|
expdimp |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵 ) ∧ dom 𝐴 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) → ( ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ∈ dom 𝐵 → dom 𝐴 ∈ dom 𝐵 ) ) |
37 |
36
|
con3d |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵 ) ∧ dom 𝐴 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) → ( ¬ dom 𝐴 ∈ dom 𝐵 → ¬ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ∈ dom 𝐵 ) ) |
38 |
31 37
|
sylbid |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵 ) ∧ dom 𝐴 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) → ( ( 𝐵 ‘ dom 𝐴 ) = ∅ → ¬ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ∈ dom 𝐵 ) ) |
39 |
20 38
|
sylbid |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵 ) ∧ dom 𝐴 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) → ( ( 𝐴 ‘ dom 𝐴 ) = ( 𝐵 ‘ dom 𝐴 ) → ¬ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ∈ dom 𝐵 ) ) |
40 |
12 39
|
mpd |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵 ) ∧ dom 𝐴 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) → ¬ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ∈ dom 𝐵 ) |
41 |
|
ndmfv |
⊢ ( ¬ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ∈ dom 𝐵 → ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = ∅ ) |
42 |
40 41
|
syl |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵 ) ∧ dom 𝐴 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) → ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = ∅ ) |
43 |
11 42
|
eqtr4d |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵 ) ∧ dom 𝐴 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) → ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) ) |
44 |
2 43
|
mtand |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵 ) → ¬ dom 𝐴 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) |
45 |
|
nosepon |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵 ) → ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ∈ On ) |
46 |
|
nodmon |
⊢ ( 𝐴 ∈ No → dom 𝐴 ∈ On ) |
47 |
46
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵 ) → dom 𝐴 ∈ On ) |
48 |
|
ontri1 |
⊢ ( ( ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ∈ On ∧ dom 𝐴 ∈ On ) → ( ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ⊆ dom 𝐴 ↔ ¬ dom 𝐴 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) ) |
49 |
45 47 48
|
syl2anc |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵 ) → ( ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ⊆ dom 𝐴 ↔ ¬ dom 𝐴 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) ) |
50 |
44 49
|
mpbird |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵 ) → ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ⊆ dom 𝐴 ) |