Step |
Hyp |
Ref |
Expression |
1 |
|
nosepne |
|- ( ( A e. No /\ B e. No /\ A =/= B ) -> ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) =/= ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) ) |
2 |
1
|
neneqd |
|- ( ( A e. No /\ B e. No /\ A =/= B ) -> -. ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) ) |
3 |
|
nodmord |
|- ( A e. No -> Ord dom A ) |
4 |
3
|
3ad2ant1 |
|- ( ( A e. No /\ B e. No /\ A =/= B ) -> Ord dom A ) |
5 |
|
ordn2lp |
|- ( Ord dom A -> -. ( dom A e. |^| { x e. On | ( A ` x ) =/= ( B ` x ) } /\ |^| { x e. On | ( A ` x ) =/= ( B ` x ) } e. dom A ) ) |
6 |
4 5
|
syl |
|- ( ( A e. No /\ B e. No /\ A =/= B ) -> -. ( dom A e. |^| { x e. On | ( A ` x ) =/= ( B ` x ) } /\ |^| { x e. On | ( A ` x ) =/= ( B ` x ) } e. dom A ) ) |
7 |
|
imnan |
|- ( ( dom A e. |^| { x e. On | ( A ` x ) =/= ( B ` x ) } -> -. |^| { x e. On | ( A ` x ) =/= ( B ` x ) } e. dom A ) <-> -. ( dom A e. |^| { x e. On | ( A ` x ) =/= ( B ` x ) } /\ |^| { x e. On | ( A ` x ) =/= ( B ` x ) } e. dom A ) ) |
8 |
6 7
|
sylibr |
|- ( ( A e. No /\ B e. No /\ A =/= B ) -> ( dom A e. |^| { x e. On | ( A ` x ) =/= ( B ` x ) } -> -. |^| { x e. On | ( A ` x ) =/= ( B ` x ) } e. dom A ) ) |
9 |
8
|
imp |
|- ( ( ( A e. No /\ B e. No /\ A =/= B ) /\ dom A e. |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) -> -. |^| { x e. On | ( A ` x ) =/= ( B ` x ) } e. dom A ) |
10 |
|
ndmfv |
|- ( -. |^| { x e. On | ( A ` x ) =/= ( B ` x ) } e. dom A -> ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = (/) ) |
11 |
9 10
|
syl |
|- ( ( ( A e. No /\ B e. No /\ A =/= B ) /\ dom A e. |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) -> ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = (/) ) |
12 |
|
nosepeq |
|- ( ( ( A e. No /\ B e. No /\ A =/= B ) /\ dom A e. |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) -> ( A ` dom A ) = ( B ` dom A ) ) |
13 |
|
simpl1 |
|- ( ( ( A e. No /\ B e. No /\ A =/= B ) /\ dom A e. |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) -> A e. No ) |
14 |
13 3
|
syl |
|- ( ( ( A e. No /\ B e. No /\ A =/= B ) /\ dom A e. |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) -> Ord dom A ) |
15 |
|
ordirr |
|- ( Ord dom A -> -. dom A e. dom A ) |
16 |
|
ndmfv |
|- ( -. dom A e. dom A -> ( A ` dom A ) = (/) ) |
17 |
14 15 16
|
3syl |
|- ( ( ( A e. No /\ B e. No /\ A =/= B ) /\ dom A e. |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) -> ( A ` dom A ) = (/) ) |
18 |
17
|
eqeq1d |
|- ( ( ( A e. No /\ B e. No /\ A =/= B ) /\ dom A e. |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) -> ( ( A ` dom A ) = ( B ` dom A ) <-> (/) = ( B ` dom A ) ) ) |
19 |
|
eqcom |
|- ( (/) = ( B ` dom A ) <-> ( B ` dom A ) = (/) ) |
20 |
18 19
|
bitrdi |
|- ( ( ( A e. No /\ B e. No /\ A =/= B ) /\ dom A e. |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) -> ( ( A ` dom A ) = ( B ` dom A ) <-> ( B ` dom A ) = (/) ) ) |
21 |
|
simpl2 |
|- ( ( ( A e. No /\ B e. No /\ A =/= B ) /\ dom A e. |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) -> B e. No ) |
22 |
|
nofun |
|- ( B e. No -> Fun B ) |
23 |
21 22
|
syl |
|- ( ( ( A e. No /\ B e. No /\ A =/= B ) /\ dom A e. |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) -> Fun B ) |
24 |
|
nosgnn0 |
|- -. (/) e. { 1o , 2o } |
25 |
|
norn |
|- ( B e. No -> ran B C_ { 1o , 2o } ) |
26 |
21 25
|
syl |
|- ( ( ( A e. No /\ B e. No /\ A =/= B ) /\ dom A e. |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) -> ran B C_ { 1o , 2o } ) |
27 |
26
|
sseld |
|- ( ( ( A e. No /\ B e. No /\ A =/= B ) /\ dom A e. |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) -> ( (/) e. ran B -> (/) e. { 1o , 2o } ) ) |
28 |
24 27
|
mtoi |
|- ( ( ( A e. No /\ B e. No /\ A =/= B ) /\ dom A e. |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) -> -. (/) e. ran B ) |
29 |
|
funeldmb |
|- ( ( Fun B /\ -. (/) e. ran B ) -> ( dom A e. dom B <-> ( B ` dom A ) =/= (/) ) ) |
30 |
23 28 29
|
syl2anc |
|- ( ( ( A e. No /\ B e. No /\ A =/= B ) /\ dom A e. |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) -> ( dom A e. dom B <-> ( B ` dom A ) =/= (/) ) ) |
31 |
30
|
necon2bbid |
|- ( ( ( A e. No /\ B e. No /\ A =/= B ) /\ dom A e. |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) -> ( ( B ` dom A ) = (/) <-> -. dom A e. dom B ) ) |
32 |
|
nodmord |
|- ( B e. No -> Ord dom B ) |
33 |
32
|
3ad2ant2 |
|- ( ( A e. No /\ B e. No /\ A =/= B ) -> Ord dom B ) |
34 |
|
ordtr1 |
|- ( Ord dom B -> ( ( dom A e. |^| { x e. On | ( A ` x ) =/= ( B ` x ) } /\ |^| { x e. On | ( A ` x ) =/= ( B ` x ) } e. dom B ) -> dom A e. dom B ) ) |
35 |
33 34
|
syl |
|- ( ( A e. No /\ B e. No /\ A =/= B ) -> ( ( dom A e. |^| { x e. On | ( A ` x ) =/= ( B ` x ) } /\ |^| { x e. On | ( A ` x ) =/= ( B ` x ) } e. dom B ) -> dom A e. dom B ) ) |
36 |
35
|
expdimp |
|- ( ( ( A e. No /\ B e. No /\ A =/= B ) /\ dom A e. |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) -> ( |^| { x e. On | ( A ` x ) =/= ( B ` x ) } e. dom B -> dom A e. dom B ) ) |
37 |
36
|
con3d |
|- ( ( ( A e. No /\ B e. No /\ A =/= B ) /\ dom A e. |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) -> ( -. dom A e. dom B -> -. |^| { x e. On | ( A ` x ) =/= ( B ` x ) } e. dom B ) ) |
38 |
31 37
|
sylbid |
|- ( ( ( A e. No /\ B e. No /\ A =/= B ) /\ dom A e. |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) -> ( ( B ` dom A ) = (/) -> -. |^| { x e. On | ( A ` x ) =/= ( B ` x ) } e. dom B ) ) |
39 |
20 38
|
sylbid |
|- ( ( ( A e. No /\ B e. No /\ A =/= B ) /\ dom A e. |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) -> ( ( A ` dom A ) = ( B ` dom A ) -> -. |^| { x e. On | ( A ` x ) =/= ( B ` x ) } e. dom B ) ) |
40 |
12 39
|
mpd |
|- ( ( ( A e. No /\ B e. No /\ A =/= B ) /\ dom A e. |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) -> -. |^| { x e. On | ( A ` x ) =/= ( B ` x ) } e. dom B ) |
41 |
|
ndmfv |
|- ( -. |^| { x e. On | ( A ` x ) =/= ( B ` x ) } e. dom B -> ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = (/) ) |
42 |
40 41
|
syl |
|- ( ( ( A e. No /\ B e. No /\ A =/= B ) /\ dom A e. |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) -> ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = (/) ) |
43 |
11 42
|
eqtr4d |
|- ( ( ( A e. No /\ B e. No /\ A =/= B ) /\ dom A e. |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) -> ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) ) |
44 |
2 43
|
mtand |
|- ( ( A e. No /\ B e. No /\ A =/= B ) -> -. dom A e. |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) |
45 |
|
nosepon |
|- ( ( A e. No /\ B e. No /\ A =/= B ) -> |^| { x e. On | ( A ` x ) =/= ( B ` x ) } e. On ) |
46 |
|
nodmon |
|- ( A e. No -> dom A e. On ) |
47 |
46
|
3ad2ant1 |
|- ( ( A e. No /\ B e. No /\ A =/= B ) -> dom A e. On ) |
48 |
|
ontri1 |
|- ( ( |^| { x e. On | ( A ` x ) =/= ( B ` x ) } e. On /\ dom A e. On ) -> ( |^| { x e. On | ( A ` x ) =/= ( B ` x ) } C_ dom A <-> -. dom A e. |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) ) |
49 |
45 47 48
|
syl2anc |
|- ( ( A e. No /\ B e. No /\ A =/= B ) -> ( |^| { x e. On | ( A ` x ) =/= ( B ` x ) } C_ dom A <-> -. dom A e. |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) ) |
50 |
44 49
|
mpbird |
|- ( ( A e. No /\ B e. No /\ A =/= B ) -> |^| { x e. On | ( A ` x ) =/= ( B ` x ) } C_ dom A ) |