Step |
Hyp |
Ref |
Expression |
1 |
|
fvelrn |
|- ( ( Fun F /\ A e. dom F ) -> ( F ` A ) e. ran F ) |
2 |
1
|
ex |
|- ( Fun F -> ( A e. dom F -> ( F ` A ) e. ran F ) ) |
3 |
2
|
adantr |
|- ( ( Fun F /\ ( F ` A ) = (/) ) -> ( A e. dom F -> ( F ` A ) e. ran F ) ) |
4 |
|
eleq1 |
|- ( ( F ` A ) = (/) -> ( ( F ` A ) e. ran F <-> (/) e. ran F ) ) |
5 |
4
|
adantl |
|- ( ( Fun F /\ ( F ` A ) = (/) ) -> ( ( F ` A ) e. ran F <-> (/) e. ran F ) ) |
6 |
3 5
|
sylibd |
|- ( ( Fun F /\ ( F ` A ) = (/) ) -> ( A e. dom F -> (/) e. ran F ) ) |
7 |
6
|
con3d |
|- ( ( Fun F /\ ( F ` A ) = (/) ) -> ( -. (/) e. ran F -> -. A e. dom F ) ) |
8 |
7
|
impancom |
|- ( ( Fun F /\ -. (/) e. ran F ) -> ( ( F ` A ) = (/) -> -. A e. dom F ) ) |
9 |
|
ndmfv |
|- ( -. A e. dom F -> ( F ` A ) = (/) ) |
10 |
8 9
|
impbid1 |
|- ( ( Fun F /\ -. (/) e. ran F ) -> ( ( F ` A ) = (/) <-> -. A e. dom F ) ) |
11 |
10
|
necon2abid |
|- ( ( Fun F /\ -. (/) e. ran F ) -> ( A e. dom F <-> ( F ` A ) =/= (/) ) ) |