Metamath Proof Explorer


Theorem funeldmb

Description: If (/) is not part of the range of a function F , then A is in the domain of F iff ( FA ) =/= (/) . (Contributed by Scott Fenton, 7-Dec-2021)

Ref Expression
Assertion funeldmb FunF¬ranFAdomFFA

Proof

Step Hyp Ref Expression
1 fvelrn FunFAdomFFAranF
2 1 ex FunFAdomFFAranF
3 2 adantr FunFFA=AdomFFAranF
4 eleq1 FA=FAranFranF
5 4 adantl FunFFA=FAranFranF
6 3 5 sylibd FunFFA=AdomFranF
7 6 con3d FunFFA=¬ranF¬AdomF
8 7 impancom FunF¬ranFFA=¬AdomF
9 ndmfv ¬AdomFFA=
10 8 9 impbid1 FunF¬ranFFA=¬AdomF
11 10 necon2abid FunF¬ranFAdomFFA