Description: Given two non-equal surreals, their separator is less-than or equal to the domain of one of them. Part of Lemma 2.1.1 of Lipparini p. 3. (Contributed by Scott Fenton, 6-Dec-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | nosepssdm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nosepne | |
|
2 | 1 | neneqd | |
3 | nodmord | |
|
4 | 3 | 3ad2ant1 | |
5 | ordn2lp | |
|
6 | 4 5 | syl | |
7 | imnan | |
|
8 | 6 7 | sylibr | |
9 | 8 | imp | |
10 | ndmfv | |
|
11 | 9 10 | syl | |
12 | nosepeq | |
|
13 | simpl1 | |
|
14 | 13 3 | syl | |
15 | ordirr | |
|
16 | ndmfv | |
|
17 | 14 15 16 | 3syl | |
18 | 17 | eqeq1d | |
19 | eqcom | |
|
20 | 18 19 | bitrdi | |
21 | simpl2 | |
|
22 | nofun | |
|
23 | 21 22 | syl | |
24 | nosgnn0 | |
|
25 | norn | |
|
26 | 21 25 | syl | |
27 | 26 | sseld | |
28 | 24 27 | mtoi | |
29 | funeldmb | |
|
30 | 23 28 29 | syl2anc | |
31 | 30 | necon2bbid | |
32 | nodmord | |
|
33 | 32 | 3ad2ant2 | |
34 | ordtr1 | |
|
35 | 33 34 | syl | |
36 | 35 | expdimp | |
37 | 36 | con3d | |
38 | 31 37 | sylbid | |
39 | 20 38 | sylbid | |
40 | 12 39 | mpd | |
41 | ndmfv | |
|
42 | 40 41 | syl | |
43 | 11 42 | eqtr4d | |
44 | 2 43 | mtand | |
45 | nosepon | |
|
46 | nodmon | |
|
47 | 46 | 3ad2ant1 | |
48 | ontri1 | |
|
49 | 45 47 48 | syl2anc | |
50 | 44 49 | mpbird | |