Metamath Proof Explorer


Theorem nosepssdm

Description: Given two non-equal surreals, their separator is less-than or equal to the domain of one of them. Part of Lemma 2.1.1 of Lipparini p. 3. (Contributed by Scott Fenton, 6-Dec-2021)

Ref Expression
Assertion nosepssdm ANoBNoABxOn|AxBxdomA

Proof

Step Hyp Ref Expression
1 nosepne ANoBNoABAxOn|AxBxBxOn|AxBx
2 1 neneqd ANoBNoAB¬AxOn|AxBx=BxOn|AxBx
3 nodmord ANoOrddomA
4 3 3ad2ant1 ANoBNoABOrddomA
5 ordn2lp OrddomA¬domAxOn|AxBxxOn|AxBxdomA
6 4 5 syl ANoBNoAB¬domAxOn|AxBxxOn|AxBxdomA
7 imnan domAxOn|AxBx¬xOn|AxBxdomA¬domAxOn|AxBxxOn|AxBxdomA
8 6 7 sylibr ANoBNoABdomAxOn|AxBx¬xOn|AxBxdomA
9 8 imp ANoBNoABdomAxOn|AxBx¬xOn|AxBxdomA
10 ndmfv ¬xOn|AxBxdomAAxOn|AxBx=
11 9 10 syl ANoBNoABdomAxOn|AxBxAxOn|AxBx=
12 nosepeq ANoBNoABdomAxOn|AxBxAdomA=BdomA
13 simpl1 ANoBNoABdomAxOn|AxBxANo
14 13 3 syl ANoBNoABdomAxOn|AxBxOrddomA
15 ordirr OrddomA¬domAdomA
16 ndmfv ¬domAdomAAdomA=
17 14 15 16 3syl ANoBNoABdomAxOn|AxBxAdomA=
18 17 eqeq1d ANoBNoABdomAxOn|AxBxAdomA=BdomA=BdomA
19 eqcom =BdomABdomA=
20 18 19 bitrdi ANoBNoABdomAxOn|AxBxAdomA=BdomABdomA=
21 simpl2 ANoBNoABdomAxOn|AxBxBNo
22 nofun BNoFunB
23 21 22 syl ANoBNoABdomAxOn|AxBxFunB
24 nosgnn0 ¬1𝑜2𝑜
25 norn BNoranB1𝑜2𝑜
26 21 25 syl ANoBNoABdomAxOn|AxBxranB1𝑜2𝑜
27 26 sseld ANoBNoABdomAxOn|AxBxranB1𝑜2𝑜
28 24 27 mtoi ANoBNoABdomAxOn|AxBx¬ranB
29 funeldmb FunB¬ranBdomAdomBBdomA
30 23 28 29 syl2anc ANoBNoABdomAxOn|AxBxdomAdomBBdomA
31 30 necon2bbid ANoBNoABdomAxOn|AxBxBdomA=¬domAdomB
32 nodmord BNoOrddomB
33 32 3ad2ant2 ANoBNoABOrddomB
34 ordtr1 OrddomBdomAxOn|AxBxxOn|AxBxdomBdomAdomB
35 33 34 syl ANoBNoABdomAxOn|AxBxxOn|AxBxdomBdomAdomB
36 35 expdimp ANoBNoABdomAxOn|AxBxxOn|AxBxdomBdomAdomB
37 36 con3d ANoBNoABdomAxOn|AxBx¬domAdomB¬xOn|AxBxdomB
38 31 37 sylbid ANoBNoABdomAxOn|AxBxBdomA=¬xOn|AxBxdomB
39 20 38 sylbid ANoBNoABdomAxOn|AxBxAdomA=BdomA¬xOn|AxBxdomB
40 12 39 mpd ANoBNoABdomAxOn|AxBx¬xOn|AxBxdomB
41 ndmfv ¬xOn|AxBxdomBBxOn|AxBx=
42 40 41 syl ANoBNoABdomAxOn|AxBxBxOn|AxBx=
43 11 42 eqtr4d ANoBNoABdomAxOn|AxBxAxOn|AxBx=BxOn|AxBx
44 2 43 mtand ANoBNoAB¬domAxOn|AxBx
45 nosepon ANoBNoABxOn|AxBxOn
46 nodmon ANodomAOn
47 46 3ad2ant1 ANoBNoABdomAOn
48 ontri1 xOn|AxBxOndomAOnxOn|AxBxdomA¬domAxOn|AxBx
49 45 47 48 syl2anc ANoBNoABxOn|AxBxdomA¬domAxOn|AxBx
50 44 49 mpbird ANoBNoABxOn|AxBxdomA