Metamath Proof Explorer


Theorem nosepeq

Description: The values of two surreals at a point less than their separators are equal. (Contributed by Scott Fenton, 6-Dec-2021)

Ref Expression
Assertion nosepeq ANoBNoABXxOn|AxBxAX=BX

Proof

Step Hyp Ref Expression
1 nosepon ANoBNoABxOn|AxBxOn
2 onelon xOn|AxBxOnXxOn|AxBxXOn
3 1 2 sylan ANoBNoABXxOn|AxBxXOn
4 simpr ANoBNoABXxOn|AxBxXxOn|AxBx
5 fveq2 x=XAx=AX
6 fveq2 x=XBx=BX
7 5 6 neeq12d x=XAxBxAXBX
8 7 onnminsb XOnXxOn|AxBx¬AXBX
9 3 4 8 sylc ANoBNoABXxOn|AxBx¬AXBX
10 df-ne AXBX¬AX=BX
11 10 con2bii AX=BX¬AXBX
12 9 11 sylibr ANoBNoABXxOn|AxBxAX=BX