Metamath Proof Explorer


Theorem nodenselem4

Description: Lemma for nodense . Show that a particular abstraction is an ordinal. (Contributed by Scott Fenton, 16-Jun-2011)

Ref Expression
Assertion nodenselem4 ( ( ( 𝐴 No 𝐵 No ) ∧ 𝐴 <s 𝐵 ) → { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ∈ On )

Proof

Step Hyp Ref Expression
1 simpll ( ( ( 𝐴 No 𝐵 No ) ∧ 𝐴 <s 𝐵 ) → 𝐴 No )
2 simplr ( ( ( 𝐴 No 𝐵 No ) ∧ 𝐴 <s 𝐵 ) → 𝐵 No )
3 sltso <s Or No
4 sonr ( ( <s Or No 𝐴 No ) → ¬ 𝐴 <s 𝐴 )
5 3 4 mpan ( 𝐴 No → ¬ 𝐴 <s 𝐴 )
6 5 adantr ( ( 𝐴 No 𝐵 No ) → ¬ 𝐴 <s 𝐴 )
7 breq2 ( 𝐴 = 𝐵 → ( 𝐴 <s 𝐴𝐴 <s 𝐵 ) )
8 7 notbid ( 𝐴 = 𝐵 → ( ¬ 𝐴 <s 𝐴 ↔ ¬ 𝐴 <s 𝐵 ) )
9 6 8 syl5ibcom ( ( 𝐴 No 𝐵 No ) → ( 𝐴 = 𝐵 → ¬ 𝐴 <s 𝐵 ) )
10 9 necon2ad ( ( 𝐴 No 𝐵 No ) → ( 𝐴 <s 𝐵𝐴𝐵 ) )
11 10 imp ( ( ( 𝐴 No 𝐵 No ) ∧ 𝐴 <s 𝐵 ) → 𝐴𝐵 )
12 nosepon ( ( 𝐴 No 𝐵 No 𝐴𝐵 ) → { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ∈ On )
13 1 2 11 12 syl3anc ( ( ( 𝐴 No 𝐵 No ) ∧ 𝐴 <s 𝐵 ) → { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ∈ On )