| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpll | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝐴  <s  𝐵 )  →  𝐴  ∈   No  ) | 
						
							| 2 |  | simplr | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝐴  <s  𝐵 )  →  𝐵  ∈   No  ) | 
						
							| 3 |  | sltso | ⊢  <s   Or   No | 
						
							| 4 |  | sonr | ⊢ ( (  <s   Or   No   ∧  𝐴  ∈   No  )  →  ¬  𝐴  <s  𝐴 ) | 
						
							| 5 | 3 4 | mpan | ⊢ ( 𝐴  ∈   No   →  ¬  𝐴  <s  𝐴 ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ¬  𝐴  <s  𝐴 ) | 
						
							| 7 |  | breq2 | ⊢ ( 𝐴  =  𝐵  →  ( 𝐴  <s  𝐴  ↔  𝐴  <s  𝐵 ) ) | 
						
							| 8 | 7 | notbid | ⊢ ( 𝐴  =  𝐵  →  ( ¬  𝐴  <s  𝐴  ↔  ¬  𝐴  <s  𝐵 ) ) | 
						
							| 9 | 6 8 | syl5ibcom | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( 𝐴  =  𝐵  →  ¬  𝐴  <s  𝐵 ) ) | 
						
							| 10 | 9 | necon2ad | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( 𝐴  <s  𝐵  →  𝐴  ≠  𝐵 ) ) | 
						
							| 11 | 10 | imp | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝐴  <s  𝐵 )  →  𝐴  ≠  𝐵 ) | 
						
							| 12 |  | nosepon | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝐴  ≠  𝐵 )  →  ∩  { 𝑎  ∈  On  ∣  ( 𝐴 ‘ 𝑎 )  ≠  ( 𝐵 ‘ 𝑎 ) }  ∈  On ) | 
						
							| 13 | 1 2 11 12 | syl3anc | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝐴  <s  𝐵 )  →  ∩  { 𝑎  ∈  On  ∣  ( 𝐴 ‘ 𝑎 )  ≠  ( 𝐵 ‘ 𝑎 ) }  ∈  On ) |