Step |
Hyp |
Ref |
Expression |
1 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ∧ 𝐴 <s 𝐵 ) ) → 𝐴 ∈ No ) |
2 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ∧ 𝐴 <s 𝐵 ) ) → 𝐵 ∈ No ) |
3 |
|
sltso |
⊢ <s Or No |
4 |
|
sonr |
⊢ ( ( <s Or No ∧ 𝐴 ∈ No ) → ¬ 𝐴 <s 𝐴 ) |
5 |
3 4
|
mpan |
⊢ ( 𝐴 ∈ No → ¬ 𝐴 <s 𝐴 ) |
6 |
|
breq2 |
⊢ ( 𝐴 = 𝐵 → ( 𝐴 <s 𝐴 ↔ 𝐴 <s 𝐵 ) ) |
7 |
6
|
notbid |
⊢ ( 𝐴 = 𝐵 → ( ¬ 𝐴 <s 𝐴 ↔ ¬ 𝐴 <s 𝐵 ) ) |
8 |
5 7
|
syl5ibcom |
⊢ ( 𝐴 ∈ No → ( 𝐴 = 𝐵 → ¬ 𝐴 <s 𝐵 ) ) |
9 |
8
|
necon2ad |
⊢ ( 𝐴 ∈ No → ( 𝐴 <s 𝐵 → 𝐴 ≠ 𝐵 ) ) |
10 |
9
|
adantr |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 <s 𝐵 → 𝐴 ≠ 𝐵 ) ) |
11 |
10
|
imp |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝐴 <s 𝐵 ) → 𝐴 ≠ 𝐵 ) |
12 |
11
|
adantrl |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ∧ 𝐴 <s 𝐵 ) ) → 𝐴 ≠ 𝐵 ) |
13 |
|
nosepdm |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵 ) → ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ∈ ( dom 𝐴 ∪ dom 𝐵 ) ) |
14 |
1 2 12 13
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ∧ 𝐴 <s 𝐵 ) ) → ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ∈ ( dom 𝐴 ∪ dom 𝐵 ) ) |
15 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ∧ 𝐴 <s 𝐵 ) ) → ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ) |
16 |
15
|
uneq2d |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ∧ 𝐴 <s 𝐵 ) ) → ( ( bday ‘ 𝐴 ) ∪ ( bday ‘ 𝐴 ) ) = ( ( bday ‘ 𝐴 ) ∪ ( bday ‘ 𝐵 ) ) ) |
17 |
|
unidm |
⊢ ( ( bday ‘ 𝐴 ) ∪ ( bday ‘ 𝐴 ) ) = ( bday ‘ 𝐴 ) |
18 |
16 17
|
eqtr3di |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ∧ 𝐴 <s 𝐵 ) ) → ( ( bday ‘ 𝐴 ) ∪ ( bday ‘ 𝐵 ) ) = ( bday ‘ 𝐴 ) ) |
19 |
|
bdayval |
⊢ ( 𝐴 ∈ No → ( bday ‘ 𝐴 ) = dom 𝐴 ) |
20 |
1 19
|
syl |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ∧ 𝐴 <s 𝐵 ) ) → ( bday ‘ 𝐴 ) = dom 𝐴 ) |
21 |
|
bdayval |
⊢ ( 𝐵 ∈ No → ( bday ‘ 𝐵 ) = dom 𝐵 ) |
22 |
2 21
|
syl |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ∧ 𝐴 <s 𝐵 ) ) → ( bday ‘ 𝐵 ) = dom 𝐵 ) |
23 |
20 22
|
uneq12d |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ∧ 𝐴 <s 𝐵 ) ) → ( ( bday ‘ 𝐴 ) ∪ ( bday ‘ 𝐵 ) ) = ( dom 𝐴 ∪ dom 𝐵 ) ) |
24 |
18 23 20
|
3eqtr3d |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ∧ 𝐴 <s 𝐵 ) ) → ( dom 𝐴 ∪ dom 𝐵 ) = dom 𝐴 ) |
25 |
14 24
|
eleqtrd |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ∧ 𝐴 <s 𝐵 ) ) → ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ∈ dom 𝐴 ) |
26 |
25 20
|
eleqtrrd |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ∧ 𝐴 <s 𝐵 ) ) → ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ∈ ( bday ‘ 𝐴 ) ) |