| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpll | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  ( (  bday  ‘ 𝐴 )  =  (  bday  ‘ 𝐵 )  ∧  𝐴  <s  𝐵 ) )  →  𝐴  ∈   No  ) | 
						
							| 2 |  | simplr | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  ( (  bday  ‘ 𝐴 )  =  (  bday  ‘ 𝐵 )  ∧  𝐴  <s  𝐵 ) )  →  𝐵  ∈   No  ) | 
						
							| 3 |  | sltso | ⊢  <s   Or   No | 
						
							| 4 |  | sonr | ⊢ ( (  <s   Or   No   ∧  𝐴  ∈   No  )  →  ¬  𝐴  <s  𝐴 ) | 
						
							| 5 | 3 4 | mpan | ⊢ ( 𝐴  ∈   No   →  ¬  𝐴  <s  𝐴 ) | 
						
							| 6 |  | breq2 | ⊢ ( 𝐴  =  𝐵  →  ( 𝐴  <s  𝐴  ↔  𝐴  <s  𝐵 ) ) | 
						
							| 7 | 6 | notbid | ⊢ ( 𝐴  =  𝐵  →  ( ¬  𝐴  <s  𝐴  ↔  ¬  𝐴  <s  𝐵 ) ) | 
						
							| 8 | 5 7 | syl5ibcom | ⊢ ( 𝐴  ∈   No   →  ( 𝐴  =  𝐵  →  ¬  𝐴  <s  𝐵 ) ) | 
						
							| 9 | 8 | necon2ad | ⊢ ( 𝐴  ∈   No   →  ( 𝐴  <s  𝐵  →  𝐴  ≠  𝐵 ) ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( 𝐴  <s  𝐵  →  𝐴  ≠  𝐵 ) ) | 
						
							| 11 | 10 | imp | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝐴  <s  𝐵 )  →  𝐴  ≠  𝐵 ) | 
						
							| 12 | 11 | adantrl | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  ( (  bday  ‘ 𝐴 )  =  (  bday  ‘ 𝐵 )  ∧  𝐴  <s  𝐵 ) )  →  𝐴  ≠  𝐵 ) | 
						
							| 13 |  | nosepdm | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝐴  ≠  𝐵 )  →  ∩  { 𝑎  ∈  On  ∣  ( 𝐴 ‘ 𝑎 )  ≠  ( 𝐵 ‘ 𝑎 ) }  ∈  ( dom  𝐴  ∪  dom  𝐵 ) ) | 
						
							| 14 | 1 2 12 13 | syl3anc | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  ( (  bday  ‘ 𝐴 )  =  (  bday  ‘ 𝐵 )  ∧  𝐴  <s  𝐵 ) )  →  ∩  { 𝑎  ∈  On  ∣  ( 𝐴 ‘ 𝑎 )  ≠  ( 𝐵 ‘ 𝑎 ) }  ∈  ( dom  𝐴  ∪  dom  𝐵 ) ) | 
						
							| 15 |  | simprl | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  ( (  bday  ‘ 𝐴 )  =  (  bday  ‘ 𝐵 )  ∧  𝐴  <s  𝐵 ) )  →  (  bday  ‘ 𝐴 )  =  (  bday  ‘ 𝐵 ) ) | 
						
							| 16 | 15 | uneq2d | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  ( (  bday  ‘ 𝐴 )  =  (  bday  ‘ 𝐵 )  ∧  𝐴  <s  𝐵 ) )  →  ( (  bday  ‘ 𝐴 )  ∪  (  bday  ‘ 𝐴 ) )  =  ( (  bday  ‘ 𝐴 )  ∪  (  bday  ‘ 𝐵 ) ) ) | 
						
							| 17 |  | unidm | ⊢ ( (  bday  ‘ 𝐴 )  ∪  (  bday  ‘ 𝐴 ) )  =  (  bday  ‘ 𝐴 ) | 
						
							| 18 | 16 17 | eqtr3di | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  ( (  bday  ‘ 𝐴 )  =  (  bday  ‘ 𝐵 )  ∧  𝐴  <s  𝐵 ) )  →  ( (  bday  ‘ 𝐴 )  ∪  (  bday  ‘ 𝐵 ) )  =  (  bday  ‘ 𝐴 ) ) | 
						
							| 19 |  | bdayval | ⊢ ( 𝐴  ∈   No   →  (  bday  ‘ 𝐴 )  =  dom  𝐴 ) | 
						
							| 20 | 1 19 | syl | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  ( (  bday  ‘ 𝐴 )  =  (  bday  ‘ 𝐵 )  ∧  𝐴  <s  𝐵 ) )  →  (  bday  ‘ 𝐴 )  =  dom  𝐴 ) | 
						
							| 21 |  | bdayval | ⊢ ( 𝐵  ∈   No   →  (  bday  ‘ 𝐵 )  =  dom  𝐵 ) | 
						
							| 22 | 2 21 | syl | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  ( (  bday  ‘ 𝐴 )  =  (  bday  ‘ 𝐵 )  ∧  𝐴  <s  𝐵 ) )  →  (  bday  ‘ 𝐵 )  =  dom  𝐵 ) | 
						
							| 23 | 20 22 | uneq12d | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  ( (  bday  ‘ 𝐴 )  =  (  bday  ‘ 𝐵 )  ∧  𝐴  <s  𝐵 ) )  →  ( (  bday  ‘ 𝐴 )  ∪  (  bday  ‘ 𝐵 ) )  =  ( dom  𝐴  ∪  dom  𝐵 ) ) | 
						
							| 24 | 18 23 20 | 3eqtr3d | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  ( (  bday  ‘ 𝐴 )  =  (  bday  ‘ 𝐵 )  ∧  𝐴  <s  𝐵 ) )  →  ( dom  𝐴  ∪  dom  𝐵 )  =  dom  𝐴 ) | 
						
							| 25 | 14 24 | eleqtrd | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  ( (  bday  ‘ 𝐴 )  =  (  bday  ‘ 𝐵 )  ∧  𝐴  <s  𝐵 ) )  →  ∩  { 𝑎  ∈  On  ∣  ( 𝐴 ‘ 𝑎 )  ≠  ( 𝐵 ‘ 𝑎 ) }  ∈  dom  𝐴 ) | 
						
							| 26 | 25 20 | eleqtrrd | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  ( (  bday  ‘ 𝐴 )  =  (  bday  ‘ 𝐵 )  ∧  𝐴  <s  𝐵 ) )  →  ∩  { 𝑎  ∈  On  ∣  ( 𝐴 ‘ 𝑎 )  ≠  ( 𝐵 ‘ 𝑎 ) }  ∈  (  bday  ‘ 𝐴 ) ) |