Step |
Hyp |
Ref |
Expression |
1 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ∧ 𝐴 <s 𝐵 ) ) → 𝐴 ∈ No ) |
2 |
|
nodenselem4 |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝐴 <s 𝐵 ) → ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ∈ On ) |
3 |
2
|
adantrl |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ∧ 𝐴 <s 𝐵 ) ) → ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ∈ On ) |
4 |
|
noreson |
⊢ ( ( 𝐴 ∈ No ∧ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ∈ On ) → ( 𝐴 ↾ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) ∈ No ) |
5 |
1 3 4
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ∧ 𝐴 <s 𝐵 ) ) → ( 𝐴 ↾ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) ∈ No ) |