Metamath Proof Explorer


Theorem nodenselem6

Description: The restriction of a surreal to the abstraction from nodenselem4 is still a surreal. (Contributed by Scott Fenton, 16-Jun-2011)

Ref Expression
Assertion nodenselem6 ( ( ( 𝐴 No 𝐵 No ) ∧ ( ( bday 𝐴 ) = ( bday 𝐵 ) ∧ 𝐴 <s 𝐵 ) ) → ( 𝐴 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) ∈ No )

Proof

Step Hyp Ref Expression
1 simpll ( ( ( 𝐴 No 𝐵 No ) ∧ ( ( bday 𝐴 ) = ( bday 𝐵 ) ∧ 𝐴 <s 𝐵 ) ) → 𝐴 No )
2 nodenselem4 ( ( ( 𝐴 No 𝐵 No ) ∧ 𝐴 <s 𝐵 ) → { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ∈ On )
3 2 adantrl ( ( ( 𝐴 No 𝐵 No ) ∧ ( ( bday 𝐴 ) = ( bday 𝐵 ) ∧ 𝐴 <s 𝐵 ) ) → { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ∈ On )
4 noreson ( ( 𝐴 No { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ∈ On ) → ( 𝐴 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) ∈ No )
5 1 3 4 syl2anc ( ( ( 𝐴 No 𝐵 No ) ∧ ( ( bday 𝐴 ) = ( bday 𝐵 ) ∧ 𝐴 <s 𝐵 ) ) → ( 𝐴 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) ∈ No )