Metamath Proof Explorer


Theorem noreson

Description: The restriction of a surreal to an ordinal is still a surreal. (Contributed by Scott Fenton, 4-Sep-2011)

Ref Expression
Assertion noreson ( ( 𝐴 No 𝐵 ∈ On ) → ( 𝐴𝐵 ) ∈ No )

Proof

Step Hyp Ref Expression
1 elno ( 𝐴 No ↔ ∃ 𝑥 ∈ On 𝐴 : 𝑥 ⟶ { 1o , 2o } )
2 onin ( ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) → ( 𝑥𝐵 ) ∈ On )
3 fresin ( 𝐴 : 𝑥 ⟶ { 1o , 2o } → ( 𝐴𝐵 ) : ( 𝑥𝐵 ) ⟶ { 1o , 2o } )
4 feq2 ( 𝑦 = ( 𝑥𝐵 ) → ( ( 𝐴𝐵 ) : 𝑦 ⟶ { 1o , 2o } ↔ ( 𝐴𝐵 ) : ( 𝑥𝐵 ) ⟶ { 1o , 2o } ) )
5 4 rspcev ( ( ( 𝑥𝐵 ) ∈ On ∧ ( 𝐴𝐵 ) : ( 𝑥𝐵 ) ⟶ { 1o , 2o } ) → ∃ 𝑦 ∈ On ( 𝐴𝐵 ) : 𝑦 ⟶ { 1o , 2o } )
6 2 3 5 syl2an ( ( ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 : 𝑥 ⟶ { 1o , 2o } ) → ∃ 𝑦 ∈ On ( 𝐴𝐵 ) : 𝑦 ⟶ { 1o , 2o } )
7 6 an32s ( ( ( 𝑥 ∈ On ∧ 𝐴 : 𝑥 ⟶ { 1o , 2o } ) ∧ 𝐵 ∈ On ) → ∃ 𝑦 ∈ On ( 𝐴𝐵 ) : 𝑦 ⟶ { 1o , 2o } )
8 7 ex ( ( 𝑥 ∈ On ∧ 𝐴 : 𝑥 ⟶ { 1o , 2o } ) → ( 𝐵 ∈ On → ∃ 𝑦 ∈ On ( 𝐴𝐵 ) : 𝑦 ⟶ { 1o , 2o } ) )
9 8 rexlimiva ( ∃ 𝑥 ∈ On 𝐴 : 𝑥 ⟶ { 1o , 2o } → ( 𝐵 ∈ On → ∃ 𝑦 ∈ On ( 𝐴𝐵 ) : 𝑦 ⟶ { 1o , 2o } ) )
10 9 imp ( ( ∃ 𝑥 ∈ On 𝐴 : 𝑥 ⟶ { 1o , 2o } ∧ 𝐵 ∈ On ) → ∃ 𝑦 ∈ On ( 𝐴𝐵 ) : 𝑦 ⟶ { 1o , 2o } )
11 1 10 sylanb ( ( 𝐴 No 𝐵 ∈ On ) → ∃ 𝑦 ∈ On ( 𝐴𝐵 ) : 𝑦 ⟶ { 1o , 2o } )
12 elno ( ( 𝐴𝐵 ) ∈ No ↔ ∃ 𝑦 ∈ On ( 𝐴𝐵 ) : 𝑦 ⟶ { 1o , 2o } )
13 11 12 sylibr ( ( 𝐴 No 𝐵 ∈ On ) → ( 𝐴𝐵 ) ∈ No )