Step |
Hyp |
Ref |
Expression |
1 |
|
elno |
⊢ ( 𝐴 ∈ No ↔ ∃ 𝑥 ∈ On 𝐴 : 𝑥 ⟶ { 1o , 2o } ) |
2 |
|
onin |
⊢ ( ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) → ( 𝑥 ∩ 𝐵 ) ∈ On ) |
3 |
|
fresin |
⊢ ( 𝐴 : 𝑥 ⟶ { 1o , 2o } → ( 𝐴 ↾ 𝐵 ) : ( 𝑥 ∩ 𝐵 ) ⟶ { 1o , 2o } ) |
4 |
|
feq2 |
⊢ ( 𝑦 = ( 𝑥 ∩ 𝐵 ) → ( ( 𝐴 ↾ 𝐵 ) : 𝑦 ⟶ { 1o , 2o } ↔ ( 𝐴 ↾ 𝐵 ) : ( 𝑥 ∩ 𝐵 ) ⟶ { 1o , 2o } ) ) |
5 |
4
|
rspcev |
⊢ ( ( ( 𝑥 ∩ 𝐵 ) ∈ On ∧ ( 𝐴 ↾ 𝐵 ) : ( 𝑥 ∩ 𝐵 ) ⟶ { 1o , 2o } ) → ∃ 𝑦 ∈ On ( 𝐴 ↾ 𝐵 ) : 𝑦 ⟶ { 1o , 2o } ) |
6 |
2 3 5
|
syl2an |
⊢ ( ( ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 : 𝑥 ⟶ { 1o , 2o } ) → ∃ 𝑦 ∈ On ( 𝐴 ↾ 𝐵 ) : 𝑦 ⟶ { 1o , 2o } ) |
7 |
6
|
an32s |
⊢ ( ( ( 𝑥 ∈ On ∧ 𝐴 : 𝑥 ⟶ { 1o , 2o } ) ∧ 𝐵 ∈ On ) → ∃ 𝑦 ∈ On ( 𝐴 ↾ 𝐵 ) : 𝑦 ⟶ { 1o , 2o } ) |
8 |
7
|
ex |
⊢ ( ( 𝑥 ∈ On ∧ 𝐴 : 𝑥 ⟶ { 1o , 2o } ) → ( 𝐵 ∈ On → ∃ 𝑦 ∈ On ( 𝐴 ↾ 𝐵 ) : 𝑦 ⟶ { 1o , 2o } ) ) |
9 |
8
|
rexlimiva |
⊢ ( ∃ 𝑥 ∈ On 𝐴 : 𝑥 ⟶ { 1o , 2o } → ( 𝐵 ∈ On → ∃ 𝑦 ∈ On ( 𝐴 ↾ 𝐵 ) : 𝑦 ⟶ { 1o , 2o } ) ) |
10 |
9
|
imp |
⊢ ( ( ∃ 𝑥 ∈ On 𝐴 : 𝑥 ⟶ { 1o , 2o } ∧ 𝐵 ∈ On ) → ∃ 𝑦 ∈ On ( 𝐴 ↾ 𝐵 ) : 𝑦 ⟶ { 1o , 2o } ) |
11 |
1 10
|
sylanb |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ On ) → ∃ 𝑦 ∈ On ( 𝐴 ↾ 𝐵 ) : 𝑦 ⟶ { 1o , 2o } ) |
12 |
|
elno |
⊢ ( ( 𝐴 ↾ 𝐵 ) ∈ No ↔ ∃ 𝑦 ∈ On ( 𝐴 ↾ 𝐵 ) : 𝑦 ⟶ { 1o , 2o } ) |
13 |
11 12
|
sylibr |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ On ) → ( 𝐴 ↾ 𝐵 ) ∈ No ) |