Metamath Proof Explorer


Theorem noreson

Description: The restriction of a surreal to an ordinal is still a surreal. (Contributed by Scott Fenton, 4-Sep-2011)

Ref Expression
Assertion noreson A No B On A B No

Proof

Step Hyp Ref Expression
1 elno A No x On A : x 1 𝑜 2 𝑜
2 onin x On B On x B On
3 fresin A : x 1 𝑜 2 𝑜 A B : x B 1 𝑜 2 𝑜
4 feq2 y = x B A B : y 1 𝑜 2 𝑜 A B : x B 1 𝑜 2 𝑜
5 4 rspcev x B On A B : x B 1 𝑜 2 𝑜 y On A B : y 1 𝑜 2 𝑜
6 2 3 5 syl2an x On B On A : x 1 𝑜 2 𝑜 y On A B : y 1 𝑜 2 𝑜
7 6 an32s x On A : x 1 𝑜 2 𝑜 B On y On A B : y 1 𝑜 2 𝑜
8 7 ex x On A : x 1 𝑜 2 𝑜 B On y On A B : y 1 𝑜 2 𝑜
9 8 rexlimiva x On A : x 1 𝑜 2 𝑜 B On y On A B : y 1 𝑜 2 𝑜
10 9 imp x On A : x 1 𝑜 2 𝑜 B On y On A B : y 1 𝑜 2 𝑜
11 1 10 sylanb A No B On y On A B : y 1 𝑜 2 𝑜
12 elno A B No y On A B : y 1 𝑜 2 𝑜
13 11 12 sylibr A No B On A B No