Metamath Proof Explorer


Theorem noreson

Description: The restriction of a surreal to an ordinal is still a surreal. (Contributed by Scott Fenton, 4-Sep-2011)

Ref Expression
Assertion noreson ANoBOnABNo

Proof

Step Hyp Ref Expression
1 elno ANoxOnA:x1𝑜2𝑜
2 onin xOnBOnxBOn
3 fresin A:x1𝑜2𝑜AB:xB1𝑜2𝑜
4 feq2 y=xBAB:y1𝑜2𝑜AB:xB1𝑜2𝑜
5 4 rspcev xBOnAB:xB1𝑜2𝑜yOnAB:y1𝑜2𝑜
6 2 3 5 syl2an xOnBOnA:x1𝑜2𝑜yOnAB:y1𝑜2𝑜
7 6 an32s xOnA:x1𝑜2𝑜BOnyOnAB:y1𝑜2𝑜
8 7 ex xOnA:x1𝑜2𝑜BOnyOnAB:y1𝑜2𝑜
9 8 rexlimiva xOnA:x1𝑜2𝑜BOnyOnAB:y1𝑜2𝑜
10 9 imp xOnA:x1𝑜2𝑜BOnyOnAB:y1𝑜2𝑜
11 1 10 sylanb ANoBOnyOnAB:y1𝑜2𝑜
12 elno ABNoyOnAB:y1𝑜2𝑜
13 11 12 sylibr ANoBOnABNo