Description: If A , then the intersection of all the ordinals that have
differing signs in A and B exists. (Contributed by Scott
Fenton, 22-Feb-2012)
Ref | Expression | ||
---|---|---|---|
Assertion | sltintdifex | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sltval2 | |
|
2 | fvex | |
|
3 | fvex | |
|
4 | 2 3 | brtp | |
5 | fvprc | |
|
6 | 1n0 | |
|
7 | 6 | neii | |
8 | eqeq1 | |
|
9 | eqcom | |
|
10 | 8 9 | bitrdi | |
11 | 7 10 | mtbiri | |
12 | 5 11 | syl | |
13 | 12 | con4i | |
14 | 13 | adantr | |
15 | 13 | adantr | |
16 | fvprc | |
|
17 | 2on0 | |
|
18 | 17 | neii | |
19 | eqeq1 | |
|
20 | eqcom | |
|
21 | 19 20 | bitrdi | |
22 | 18 21 | mtbiri | |
23 | 16 22 | syl | |
24 | 23 | con4i | |
25 | 24 | adantl | |
26 | 14 15 25 | 3jaoi | |
27 | 4 26 | sylbi | |
28 | 1 27 | syl6bi | |