| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sltval2 |
|- ( ( A e. No /\ B e. No ) -> ( A ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ) ) |
| 2 |
|
fvex |
|- ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) e. _V |
| 3 |
|
fvex |
|- ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) e. _V |
| 4 |
2 3
|
brtp |
|- ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) <-> ( ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 1o /\ ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = (/) ) \/ ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 1o /\ ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 2o ) \/ ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = (/) /\ ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 2o ) ) ) |
| 5 |
|
fvprc |
|- ( -. |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. _V -> ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = (/) ) |
| 6 |
|
1n0 |
|- 1o =/= (/) |
| 7 |
6
|
neii |
|- -. 1o = (/) |
| 8 |
|
eqeq1 |
|- ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = (/) -> ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 1o <-> (/) = 1o ) ) |
| 9 |
|
eqcom |
|- ( (/) = 1o <-> 1o = (/) ) |
| 10 |
8 9
|
bitrdi |
|- ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = (/) -> ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 1o <-> 1o = (/) ) ) |
| 11 |
7 10
|
mtbiri |
|- ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = (/) -> -. ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 1o ) |
| 12 |
5 11
|
syl |
|- ( -. |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. _V -> -. ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 1o ) |
| 13 |
12
|
con4i |
|- ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 1o -> |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. _V ) |
| 14 |
13
|
adantr |
|- ( ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 1o /\ ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = (/) ) -> |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. _V ) |
| 15 |
13
|
adantr |
|- ( ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 1o /\ ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 2o ) -> |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. _V ) |
| 16 |
|
fvprc |
|- ( -. |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. _V -> ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = (/) ) |
| 17 |
|
2on0 |
|- 2o =/= (/) |
| 18 |
17
|
neii |
|- -. 2o = (/) |
| 19 |
|
eqeq1 |
|- ( ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = (/) -> ( ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 2o <-> (/) = 2o ) ) |
| 20 |
|
eqcom |
|- ( (/) = 2o <-> 2o = (/) ) |
| 21 |
19 20
|
bitrdi |
|- ( ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = (/) -> ( ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 2o <-> 2o = (/) ) ) |
| 22 |
18 21
|
mtbiri |
|- ( ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = (/) -> -. ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 2o ) |
| 23 |
16 22
|
syl |
|- ( -. |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. _V -> -. ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 2o ) |
| 24 |
23
|
con4i |
|- ( ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 2o -> |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. _V ) |
| 25 |
24
|
adantl |
|- ( ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = (/) /\ ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 2o ) -> |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. _V ) |
| 26 |
14 15 25
|
3jaoi |
|- ( ( ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 1o /\ ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = (/) ) \/ ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 1o /\ ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 2o ) \/ ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = (/) /\ ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 2o ) ) -> |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. _V ) |
| 27 |
4 26
|
sylbi |
|- ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) -> |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. _V ) |
| 28 |
1 27
|
biimtrdi |
|- ( ( A e. No /\ B e. No ) -> ( A |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. _V ) ) |