Metamath Proof Explorer


Theorem sltintdifex

Description: If A , then the intersection of all the ordinals that have differing signs in A and B exists. (Contributed by Scott Fenton, 22-Feb-2012)

Ref Expression
Assertion sltintdifex ( ( 𝐴 No 𝐵 No ) → ( 𝐴 <s 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ∈ V ) )

Proof

Step Hyp Ref Expression
1 sltval2 ( ( 𝐴 No 𝐵 No ) → ( 𝐴 <s 𝐵 ↔ ( 𝐴 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) { ⟨ 1o , ∅ ⟩ , ⟨ 1o , 2o ⟩ , ⟨ ∅ , 2o ⟩ } ( 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) ) )
2 fvex ( 𝐴 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) ∈ V
3 fvex ( 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) ∈ V
4 2 3 brtp ( ( 𝐴 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) { ⟨ 1o , ∅ ⟩ , ⟨ 1o , 2o ⟩ , ⟨ ∅ , 2o ⟩ } ( 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) ↔ ( ( ( 𝐴 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = 1o ∧ ( 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = ∅ ) ∨ ( ( 𝐴 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = 1o ∧ ( 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = 2o ) ∨ ( ( 𝐴 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = ∅ ∧ ( 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = 2o ) ) )
5 fvprc ( ¬ { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ∈ V → ( 𝐴 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = ∅ )
6 1n0 1o ≠ ∅
7 6 neii ¬ 1o = ∅
8 eqeq1 ( ( 𝐴 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = ∅ → ( ( 𝐴 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = 1o ↔ ∅ = 1o ) )
9 eqcom ( ∅ = 1o ↔ 1o = ∅ )
10 8 9 bitrdi ( ( 𝐴 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = ∅ → ( ( 𝐴 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = 1o ↔ 1o = ∅ ) )
11 7 10 mtbiri ( ( 𝐴 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = ∅ → ¬ ( 𝐴 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = 1o )
12 5 11 syl ( ¬ { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ∈ V → ¬ ( 𝐴 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = 1o )
13 12 con4i ( ( 𝐴 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = 1o { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ∈ V )
14 13 adantr ( ( ( 𝐴 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = 1o ∧ ( 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = ∅ ) → { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ∈ V )
15 13 adantr ( ( ( 𝐴 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = 1o ∧ ( 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = 2o ) → { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ∈ V )
16 fvprc ( ¬ { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ∈ V → ( 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = ∅ )
17 2on0 2o ≠ ∅
18 17 neii ¬ 2o = ∅
19 eqeq1 ( ( 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = ∅ → ( ( 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = 2o ↔ ∅ = 2o ) )
20 eqcom ( ∅ = 2o ↔ 2o = ∅ )
21 19 20 bitrdi ( ( 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = ∅ → ( ( 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = 2o ↔ 2o = ∅ ) )
22 18 21 mtbiri ( ( 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = ∅ → ¬ ( 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = 2o )
23 16 22 syl ( ¬ { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ∈ V → ¬ ( 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = 2o )
24 23 con4i ( ( 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = 2o { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ∈ V )
25 24 adantl ( ( ( 𝐴 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = ∅ ∧ ( 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = 2o ) → { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ∈ V )
26 14 15 25 3jaoi ( ( ( ( 𝐴 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = 1o ∧ ( 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = ∅ ) ∨ ( ( 𝐴 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = 1o ∧ ( 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = 2o ) ∨ ( ( 𝐴 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = ∅ ∧ ( 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = 2o ) ) → { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ∈ V )
27 4 26 sylbi ( ( 𝐴 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) { ⟨ 1o , ∅ ⟩ , ⟨ 1o , 2o ⟩ , ⟨ ∅ , 2o ⟩ } ( 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) → { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ∈ V )
28 1 27 syl6bi ( ( 𝐴 No 𝐵 No ) → ( 𝐴 <s 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ∈ V ) )