| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sltval2 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 <s 𝐵 ↔ ( 𝐴 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝐵 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) ) ) |
| 2 |
|
fvex |
⊢ ( 𝐴 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) ∈ V |
| 3 |
|
fvex |
⊢ ( 𝐵 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) ∈ V |
| 4 |
2 3
|
brtp |
⊢ ( ( 𝐴 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝐵 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) ↔ ( ( ( 𝐴 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = 1o ∧ ( 𝐵 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = ∅ ) ∨ ( ( 𝐴 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = 1o ∧ ( 𝐵 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = 2o ) ∨ ( ( 𝐴 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = ∅ ∧ ( 𝐵 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = 2o ) ) ) |
| 5 |
|
fvprc |
⊢ ( ¬ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ∈ V → ( 𝐴 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = ∅ ) |
| 6 |
|
1n0 |
⊢ 1o ≠ ∅ |
| 7 |
6
|
neii |
⊢ ¬ 1o = ∅ |
| 8 |
|
eqeq1 |
⊢ ( ( 𝐴 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = ∅ → ( ( 𝐴 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = 1o ↔ ∅ = 1o ) ) |
| 9 |
|
eqcom |
⊢ ( ∅ = 1o ↔ 1o = ∅ ) |
| 10 |
8 9
|
bitrdi |
⊢ ( ( 𝐴 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = ∅ → ( ( 𝐴 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = 1o ↔ 1o = ∅ ) ) |
| 11 |
7 10
|
mtbiri |
⊢ ( ( 𝐴 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = ∅ → ¬ ( 𝐴 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = 1o ) |
| 12 |
5 11
|
syl |
⊢ ( ¬ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ∈ V → ¬ ( 𝐴 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = 1o ) |
| 13 |
12
|
con4i |
⊢ ( ( 𝐴 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = 1o → ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ∈ V ) |
| 14 |
13
|
adantr |
⊢ ( ( ( 𝐴 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = 1o ∧ ( 𝐵 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = ∅ ) → ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ∈ V ) |
| 15 |
13
|
adantr |
⊢ ( ( ( 𝐴 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = 1o ∧ ( 𝐵 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = 2o ) → ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ∈ V ) |
| 16 |
|
fvprc |
⊢ ( ¬ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ∈ V → ( 𝐵 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = ∅ ) |
| 17 |
|
2on0 |
⊢ 2o ≠ ∅ |
| 18 |
17
|
neii |
⊢ ¬ 2o = ∅ |
| 19 |
|
eqeq1 |
⊢ ( ( 𝐵 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = ∅ → ( ( 𝐵 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = 2o ↔ ∅ = 2o ) ) |
| 20 |
|
eqcom |
⊢ ( ∅ = 2o ↔ 2o = ∅ ) |
| 21 |
19 20
|
bitrdi |
⊢ ( ( 𝐵 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = ∅ → ( ( 𝐵 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = 2o ↔ 2o = ∅ ) ) |
| 22 |
18 21
|
mtbiri |
⊢ ( ( 𝐵 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = ∅ → ¬ ( 𝐵 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = 2o ) |
| 23 |
16 22
|
syl |
⊢ ( ¬ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ∈ V → ¬ ( 𝐵 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = 2o ) |
| 24 |
23
|
con4i |
⊢ ( ( 𝐵 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = 2o → ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ∈ V ) |
| 25 |
24
|
adantl |
⊢ ( ( ( 𝐴 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = ∅ ∧ ( 𝐵 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = 2o ) → ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ∈ V ) |
| 26 |
14 15 25
|
3jaoi |
⊢ ( ( ( ( 𝐴 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = 1o ∧ ( 𝐵 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = ∅ ) ∨ ( ( 𝐴 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = 1o ∧ ( 𝐵 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = 2o ) ∨ ( ( 𝐴 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = ∅ ∧ ( 𝐵 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = 2o ) ) → ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ∈ V ) |
| 27 |
4 26
|
sylbi |
⊢ ( ( 𝐴 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝐵 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) → ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ∈ V ) |
| 28 |
1 27
|
biimtrdi |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 <s 𝐵 → ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ∈ V ) ) |