Step |
Hyp |
Ref |
Expression |
1 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ∧ 𝐴 <s 𝐵 ) ) → 𝐴 ∈ No ) |
2 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ∧ 𝐴 <s 𝐵 ) ) → 𝐵 ∈ No ) |
3 |
|
sltso |
⊢ <s Or No |
4 |
|
sonr |
⊢ ( ( <s Or No ∧ 𝐴 ∈ No ) → ¬ 𝐴 <s 𝐴 ) |
5 |
3 4
|
mpan |
⊢ ( 𝐴 ∈ No → ¬ 𝐴 <s 𝐴 ) |
6 |
|
breq2 |
⊢ ( 𝐴 = 𝐵 → ( 𝐴 <s 𝐴 ↔ 𝐴 <s 𝐵 ) ) |
7 |
6
|
notbid |
⊢ ( 𝐴 = 𝐵 → ( ¬ 𝐴 <s 𝐴 ↔ ¬ 𝐴 <s 𝐵 ) ) |
8 |
5 7
|
syl5ibcom |
⊢ ( 𝐴 ∈ No → ( 𝐴 = 𝐵 → ¬ 𝐴 <s 𝐵 ) ) |
9 |
8
|
necon2ad |
⊢ ( 𝐴 ∈ No → ( 𝐴 <s 𝐵 → 𝐴 ≠ 𝐵 ) ) |
10 |
9
|
imp |
⊢ ( ( 𝐴 ∈ No ∧ 𝐴 <s 𝐵 ) → 𝐴 ≠ 𝐵 ) |
11 |
10
|
ad2ant2rl |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ∧ 𝐴 <s 𝐵 ) ) → 𝐴 ≠ 𝐵 ) |
12 |
1 2 11
|
3jca |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ∧ 𝐴 <s 𝐵 ) ) → ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵 ) ) |
13 |
|
nosepeq |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵 ) ∧ 𝐶 ∈ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) → ( 𝐴 ‘ 𝐶 ) = ( 𝐵 ‘ 𝐶 ) ) |
14 |
12 13
|
sylan |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ∧ 𝐴 <s 𝐵 ) ) ∧ 𝐶 ∈ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) → ( 𝐴 ‘ 𝐶 ) = ( 𝐵 ‘ 𝐶 ) ) |
15 |
14
|
ex |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ∧ 𝐴 <s 𝐵 ) ) → ( 𝐶 ∈ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } → ( 𝐴 ‘ 𝐶 ) = ( 𝐵 ‘ 𝐶 ) ) ) |