Metamath Proof Explorer


Theorem nodenselem8

Description: Lemma for nodense . Give a condition for surreal less than when two surreals have the same birthday. (Contributed by Scott Fenton, 19-Jun-2011)

Ref Expression
Assertion nodenselem8 ( ( 𝐴 No 𝐵 No ∧ ( bday 𝐴 ) = ( bday 𝐵 ) ) → ( 𝐴 <s 𝐵 ↔ ( ( 𝐴 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = 1o ∧ ( 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = 2o ) ) )

Proof

Step Hyp Ref Expression
1 nodenselem5 ( ( ( 𝐴 No 𝐵 No ) ∧ ( ( bday 𝐴 ) = ( bday 𝐵 ) ∧ 𝐴 <s 𝐵 ) ) → { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ∈ ( bday 𝐴 ) )
2 1 exp32 ( ( 𝐴 No 𝐵 No ) → ( ( bday 𝐴 ) = ( bday 𝐵 ) → ( 𝐴 <s 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ∈ ( bday 𝐴 ) ) ) )
3 2 3impia ( ( 𝐴 No 𝐵 No ∧ ( bday 𝐴 ) = ( bday 𝐵 ) ) → ( 𝐴 <s 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ∈ ( bday 𝐴 ) ) )
4 sltval2 ( ( 𝐴 No 𝐵 No ) → ( 𝐴 <s 𝐵 ↔ ( 𝐴 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) { ⟨ 1o , ∅ ⟩ , ⟨ 1o , 2o ⟩ , ⟨ ∅ , 2o ⟩ } ( 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) ) )
5 4 3adant3 ( ( 𝐴 No 𝐵 No ∧ ( bday 𝐴 ) = ( bday 𝐵 ) ) → ( 𝐴 <s 𝐵 ↔ ( 𝐴 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) { ⟨ 1o , ∅ ⟩ , ⟨ 1o , 2o ⟩ , ⟨ ∅ , 2o ⟩ } ( 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) ) )
6 fvex ( 𝐴 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) ∈ V
7 fvex ( 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) ∈ V
8 6 7 brtp ( ( 𝐴 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) { ⟨ 1o , ∅ ⟩ , ⟨ 1o , 2o ⟩ , ⟨ ∅ , 2o ⟩ } ( 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) ↔ ( ( ( 𝐴 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = 1o ∧ ( 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = ∅ ) ∨ ( ( 𝐴 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = 1o ∧ ( 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = 2o ) ∨ ( ( 𝐴 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = ∅ ∧ ( 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = 2o ) ) )
9 eleq2 ( ( bday 𝐴 ) = ( bday 𝐵 ) → ( { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ∈ ( bday 𝐴 ) ↔ { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ∈ ( bday 𝐵 ) ) )
10 9 biimpd ( ( bday 𝐴 ) = ( bday 𝐵 ) → ( { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ∈ ( bday 𝐴 ) → { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ∈ ( bday 𝐵 ) ) )
11 nosgnn0 ¬ ∅ ∈ { 1o , 2o }
12 nofnbday ( 𝐵 No 𝐵 Fn ( bday 𝐵 ) )
13 fnfvelrn ( ( 𝐵 Fn ( bday 𝐵 ) ∧ { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ∈ ( bday 𝐵 ) ) → ( 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) ∈ ran 𝐵 )
14 eleq1 ( ( 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = ∅ → ( ( 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) ∈ ran 𝐵 ↔ ∅ ∈ ran 𝐵 ) )
15 13 14 syl5ibcom ( ( 𝐵 Fn ( bday 𝐵 ) ∧ { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ∈ ( bday 𝐵 ) ) → ( ( 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = ∅ → ∅ ∈ ran 𝐵 ) )
16 12 15 sylan ( ( 𝐵 No { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ∈ ( bday 𝐵 ) ) → ( ( 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = ∅ → ∅ ∈ ran 𝐵 ) )
17 norn ( 𝐵 No → ran 𝐵 ⊆ { 1o , 2o } )
18 17 sseld ( 𝐵 No → ( ∅ ∈ ran 𝐵 → ∅ ∈ { 1o , 2o } ) )
19 18 adantr ( ( 𝐵 No { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ∈ ( bday 𝐵 ) ) → ( ∅ ∈ ran 𝐵 → ∅ ∈ { 1o , 2o } ) )
20 16 19 syld ( ( 𝐵 No { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ∈ ( bday 𝐵 ) ) → ( ( 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = ∅ → ∅ ∈ { 1o , 2o } ) )
21 11 20 mtoi ( ( 𝐵 No { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ∈ ( bday 𝐵 ) ) → ¬ ( 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = ∅ )
22 21 ex ( 𝐵 No → ( { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ∈ ( bday 𝐵 ) → ¬ ( 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = ∅ ) )
23 22 adantl ( ( 𝐴 No 𝐵 No ) → ( { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ∈ ( bday 𝐵 ) → ¬ ( 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = ∅ ) )
24 10 23 syl9r ( ( 𝐴 No 𝐵 No ) → ( ( bday 𝐴 ) = ( bday 𝐵 ) → ( { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ∈ ( bday 𝐴 ) → ¬ ( 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = ∅ ) ) )
25 24 3impia ( ( 𝐴 No 𝐵 No ∧ ( bday 𝐴 ) = ( bday 𝐵 ) ) → ( { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ∈ ( bday 𝐴 ) → ¬ ( 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = ∅ ) )
26 25 imp ( ( ( 𝐴 No 𝐵 No ∧ ( bday 𝐴 ) = ( bday 𝐵 ) ) ∧ { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ∈ ( bday 𝐴 ) ) → ¬ ( 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = ∅ )
27 26 intnand ( ( ( 𝐴 No 𝐵 No ∧ ( bday 𝐴 ) = ( bday 𝐵 ) ) ∧ { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ∈ ( bday 𝐴 ) ) → ¬ ( ( 𝐴 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = 1o ∧ ( 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = ∅ ) )
28 nofnbday ( 𝐴 No 𝐴 Fn ( bday 𝐴 ) )
29 fnfvelrn ( ( 𝐴 Fn ( bday 𝐴 ) ∧ { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ∈ ( bday 𝐴 ) ) → ( 𝐴 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) ∈ ran 𝐴 )
30 eleq1 ( ( 𝐴 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = ∅ → ( ( 𝐴 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) ∈ ran 𝐴 ↔ ∅ ∈ ran 𝐴 ) )
31 29 30 syl5ibcom ( ( 𝐴 Fn ( bday 𝐴 ) ∧ { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ∈ ( bday 𝐴 ) ) → ( ( 𝐴 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = ∅ → ∅ ∈ ran 𝐴 ) )
32 28 31 sylan ( ( 𝐴 No { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ∈ ( bday 𝐴 ) ) → ( ( 𝐴 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = ∅ → ∅ ∈ ran 𝐴 ) )
33 norn ( 𝐴 No → ran 𝐴 ⊆ { 1o , 2o } )
34 33 sseld ( 𝐴 No → ( ∅ ∈ ran 𝐴 → ∅ ∈ { 1o , 2o } ) )
35 34 adantr ( ( 𝐴 No { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ∈ ( bday 𝐴 ) ) → ( ∅ ∈ ran 𝐴 → ∅ ∈ { 1o , 2o } ) )
36 32 35 syld ( ( 𝐴 No { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ∈ ( bday 𝐴 ) ) → ( ( 𝐴 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = ∅ → ∅ ∈ { 1o , 2o } ) )
37 11 36 mtoi ( ( 𝐴 No { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ∈ ( bday 𝐴 ) ) → ¬ ( 𝐴 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = ∅ )
38 37 3ad2antl1 ( ( ( 𝐴 No 𝐵 No ∧ ( bday 𝐴 ) = ( bday 𝐵 ) ) ∧ { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ∈ ( bday 𝐴 ) ) → ¬ ( 𝐴 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = ∅ )
39 38 intnanrd ( ( ( 𝐴 No 𝐵 No ∧ ( bday 𝐴 ) = ( bday 𝐵 ) ) ∧ { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ∈ ( bday 𝐴 ) ) → ¬ ( ( 𝐴 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = ∅ ∧ ( 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = 2o ) )
40 3orel13 ( ( ¬ ( ( 𝐴 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = 1o ∧ ( 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = ∅ ) ∧ ¬ ( ( 𝐴 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = ∅ ∧ ( 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = 2o ) ) → ( ( ( ( 𝐴 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = 1o ∧ ( 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = ∅ ) ∨ ( ( 𝐴 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = 1o ∧ ( 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = 2o ) ∨ ( ( 𝐴 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = ∅ ∧ ( 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = 2o ) ) → ( ( 𝐴 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = 1o ∧ ( 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = 2o ) ) )
41 27 39 40 syl2anc ( ( ( 𝐴 No 𝐵 No ∧ ( bday 𝐴 ) = ( bday 𝐵 ) ) ∧ { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ∈ ( bday 𝐴 ) ) → ( ( ( ( 𝐴 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = 1o ∧ ( 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = ∅ ) ∨ ( ( 𝐴 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = 1o ∧ ( 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = 2o ) ∨ ( ( 𝐴 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = ∅ ∧ ( 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = 2o ) ) → ( ( 𝐴 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = 1o ∧ ( 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = 2o ) ) )
42 41 ex ( ( 𝐴 No 𝐵 No ∧ ( bday 𝐴 ) = ( bday 𝐵 ) ) → ( { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ∈ ( bday 𝐴 ) → ( ( ( ( 𝐴 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = 1o ∧ ( 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = ∅ ) ∨ ( ( 𝐴 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = 1o ∧ ( 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = 2o ) ∨ ( ( 𝐴 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = ∅ ∧ ( 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = 2o ) ) → ( ( 𝐴 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = 1o ∧ ( 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = 2o ) ) ) )
43 42 com23 ( ( 𝐴 No 𝐵 No ∧ ( bday 𝐴 ) = ( bday 𝐵 ) ) → ( ( ( ( 𝐴 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = 1o ∧ ( 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = ∅ ) ∨ ( ( 𝐴 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = 1o ∧ ( 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = 2o ) ∨ ( ( 𝐴 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = ∅ ∧ ( 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = 2o ) ) → ( { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ∈ ( bday 𝐴 ) → ( ( 𝐴 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = 1o ∧ ( 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = 2o ) ) ) )
44 8 43 syl5bi ( ( 𝐴 No 𝐵 No ∧ ( bday 𝐴 ) = ( bday 𝐵 ) ) → ( ( 𝐴 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) { ⟨ 1o , ∅ ⟩ , ⟨ 1o , 2o ⟩ , ⟨ ∅ , 2o ⟩ } ( 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) → ( { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ∈ ( bday 𝐴 ) → ( ( 𝐴 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = 1o ∧ ( 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = 2o ) ) ) )
45 5 44 sylbid ( ( 𝐴 No 𝐵 No ∧ ( bday 𝐴 ) = ( bday 𝐵 ) ) → ( 𝐴 <s 𝐵 → ( { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ∈ ( bday 𝐴 ) → ( ( 𝐴 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = 1o ∧ ( 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = 2o ) ) ) )
46 3 45 mpdd ( ( 𝐴 No 𝐵 No ∧ ( bday 𝐴 ) = ( bday 𝐵 ) ) → ( 𝐴 <s 𝐵 → ( ( 𝐴 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = 1o ∧ ( 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = 2o ) ) )
47 3mix2 ( ( ( 𝐴 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = 1o ∧ ( 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = 2o ) → ( ( ( 𝐴 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = 1o ∧ ( 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = ∅ ) ∨ ( ( 𝐴 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = 1o ∧ ( 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = 2o ) ∨ ( ( 𝐴 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = ∅ ∧ ( 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = 2o ) ) )
48 47 8 sylibr ( ( ( 𝐴 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = 1o ∧ ( 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = 2o ) → ( 𝐴 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) { ⟨ 1o , ∅ ⟩ , ⟨ 1o , 2o ⟩ , ⟨ ∅ , 2o ⟩ } ( 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) )
49 48 5 syl5ibr ( ( 𝐴 No 𝐵 No ∧ ( bday 𝐴 ) = ( bday 𝐵 ) ) → ( ( ( 𝐴 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = 1o ∧ ( 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = 2o ) → 𝐴 <s 𝐵 ) )
50 46 49 impbid ( ( 𝐴 No 𝐵 No ∧ ( bday 𝐴 ) = ( bday 𝐵 ) ) → ( 𝐴 <s 𝐵 ↔ ( ( 𝐴 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = 1o ∧ ( 𝐵 { 𝑎 ∈ On ∣ ( 𝐴𝑎 ) ≠ ( 𝐵𝑎 ) } ) = 2o ) ) )