Step |
Hyp |
Ref |
Expression |
1 |
|
nodenselem5 |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ∧ 𝐴 <s 𝐵 ) ) → ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ∈ ( bday ‘ 𝐴 ) ) |
2 |
1
|
exp32 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) → ( 𝐴 <s 𝐵 → ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ∈ ( bday ‘ 𝐴 ) ) ) ) |
3 |
2
|
3impia |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ) → ( 𝐴 <s 𝐵 → ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ∈ ( bday ‘ 𝐴 ) ) ) |
4 |
|
sltval2 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 <s 𝐵 ↔ ( 𝐴 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝐵 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) ) ) |
5 |
4
|
3adant3 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ) → ( 𝐴 <s 𝐵 ↔ ( 𝐴 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝐵 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) ) ) |
6 |
|
fvex |
⊢ ( 𝐴 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) ∈ V |
7 |
|
fvex |
⊢ ( 𝐵 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) ∈ V |
8 |
6 7
|
brtp |
⊢ ( ( 𝐴 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝐵 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) ↔ ( ( ( 𝐴 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = 1o ∧ ( 𝐵 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = ∅ ) ∨ ( ( 𝐴 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = 1o ∧ ( 𝐵 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = 2o ) ∨ ( ( 𝐴 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = ∅ ∧ ( 𝐵 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = 2o ) ) ) |
9 |
|
eleq2 |
⊢ ( ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) → ( ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ∈ ( bday ‘ 𝐴 ) ↔ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ∈ ( bday ‘ 𝐵 ) ) ) |
10 |
9
|
biimpd |
⊢ ( ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) → ( ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ∈ ( bday ‘ 𝐴 ) → ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ∈ ( bday ‘ 𝐵 ) ) ) |
11 |
|
nosgnn0 |
⊢ ¬ ∅ ∈ { 1o , 2o } |
12 |
|
nofnbday |
⊢ ( 𝐵 ∈ No → 𝐵 Fn ( bday ‘ 𝐵 ) ) |
13 |
|
fnfvelrn |
⊢ ( ( 𝐵 Fn ( bday ‘ 𝐵 ) ∧ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ∈ ( bday ‘ 𝐵 ) ) → ( 𝐵 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) ∈ ran 𝐵 ) |
14 |
|
eleq1 |
⊢ ( ( 𝐵 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = ∅ → ( ( 𝐵 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) ∈ ran 𝐵 ↔ ∅ ∈ ran 𝐵 ) ) |
15 |
13 14
|
syl5ibcom |
⊢ ( ( 𝐵 Fn ( bday ‘ 𝐵 ) ∧ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ∈ ( bday ‘ 𝐵 ) ) → ( ( 𝐵 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = ∅ → ∅ ∈ ran 𝐵 ) ) |
16 |
12 15
|
sylan |
⊢ ( ( 𝐵 ∈ No ∧ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ∈ ( bday ‘ 𝐵 ) ) → ( ( 𝐵 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = ∅ → ∅ ∈ ran 𝐵 ) ) |
17 |
|
norn |
⊢ ( 𝐵 ∈ No → ran 𝐵 ⊆ { 1o , 2o } ) |
18 |
17
|
sseld |
⊢ ( 𝐵 ∈ No → ( ∅ ∈ ran 𝐵 → ∅ ∈ { 1o , 2o } ) ) |
19 |
18
|
adantr |
⊢ ( ( 𝐵 ∈ No ∧ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ∈ ( bday ‘ 𝐵 ) ) → ( ∅ ∈ ran 𝐵 → ∅ ∈ { 1o , 2o } ) ) |
20 |
16 19
|
syld |
⊢ ( ( 𝐵 ∈ No ∧ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ∈ ( bday ‘ 𝐵 ) ) → ( ( 𝐵 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = ∅ → ∅ ∈ { 1o , 2o } ) ) |
21 |
11 20
|
mtoi |
⊢ ( ( 𝐵 ∈ No ∧ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ∈ ( bday ‘ 𝐵 ) ) → ¬ ( 𝐵 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = ∅ ) |
22 |
21
|
ex |
⊢ ( 𝐵 ∈ No → ( ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ∈ ( bday ‘ 𝐵 ) → ¬ ( 𝐵 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = ∅ ) ) |
23 |
22
|
adantl |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ∈ ( bday ‘ 𝐵 ) → ¬ ( 𝐵 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = ∅ ) ) |
24 |
10 23
|
syl9r |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) → ( ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ∈ ( bday ‘ 𝐴 ) → ¬ ( 𝐵 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = ∅ ) ) ) |
25 |
24
|
3impia |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ) → ( ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ∈ ( bday ‘ 𝐴 ) → ¬ ( 𝐵 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = ∅ ) ) |
26 |
25
|
imp |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ) ∧ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ∈ ( bday ‘ 𝐴 ) ) → ¬ ( 𝐵 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = ∅ ) |
27 |
26
|
intnand |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ) ∧ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ∈ ( bday ‘ 𝐴 ) ) → ¬ ( ( 𝐴 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = 1o ∧ ( 𝐵 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = ∅ ) ) |
28 |
|
nofnbday |
⊢ ( 𝐴 ∈ No → 𝐴 Fn ( bday ‘ 𝐴 ) ) |
29 |
|
fnfvelrn |
⊢ ( ( 𝐴 Fn ( bday ‘ 𝐴 ) ∧ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ∈ ( bday ‘ 𝐴 ) ) → ( 𝐴 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) ∈ ran 𝐴 ) |
30 |
|
eleq1 |
⊢ ( ( 𝐴 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = ∅ → ( ( 𝐴 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) ∈ ran 𝐴 ↔ ∅ ∈ ran 𝐴 ) ) |
31 |
29 30
|
syl5ibcom |
⊢ ( ( 𝐴 Fn ( bday ‘ 𝐴 ) ∧ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ∈ ( bday ‘ 𝐴 ) ) → ( ( 𝐴 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = ∅ → ∅ ∈ ran 𝐴 ) ) |
32 |
28 31
|
sylan |
⊢ ( ( 𝐴 ∈ No ∧ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ∈ ( bday ‘ 𝐴 ) ) → ( ( 𝐴 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = ∅ → ∅ ∈ ran 𝐴 ) ) |
33 |
|
norn |
⊢ ( 𝐴 ∈ No → ran 𝐴 ⊆ { 1o , 2o } ) |
34 |
33
|
sseld |
⊢ ( 𝐴 ∈ No → ( ∅ ∈ ran 𝐴 → ∅ ∈ { 1o , 2o } ) ) |
35 |
34
|
adantr |
⊢ ( ( 𝐴 ∈ No ∧ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ∈ ( bday ‘ 𝐴 ) ) → ( ∅ ∈ ran 𝐴 → ∅ ∈ { 1o , 2o } ) ) |
36 |
32 35
|
syld |
⊢ ( ( 𝐴 ∈ No ∧ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ∈ ( bday ‘ 𝐴 ) ) → ( ( 𝐴 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = ∅ → ∅ ∈ { 1o , 2o } ) ) |
37 |
11 36
|
mtoi |
⊢ ( ( 𝐴 ∈ No ∧ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ∈ ( bday ‘ 𝐴 ) ) → ¬ ( 𝐴 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = ∅ ) |
38 |
37
|
3ad2antl1 |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ) ∧ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ∈ ( bday ‘ 𝐴 ) ) → ¬ ( 𝐴 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = ∅ ) |
39 |
38
|
intnanrd |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ) ∧ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ∈ ( bday ‘ 𝐴 ) ) → ¬ ( ( 𝐴 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = ∅ ∧ ( 𝐵 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = 2o ) ) |
40 |
|
3orel13 |
⊢ ( ( ¬ ( ( 𝐴 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = 1o ∧ ( 𝐵 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = ∅ ) ∧ ¬ ( ( 𝐴 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = ∅ ∧ ( 𝐵 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = 2o ) ) → ( ( ( ( 𝐴 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = 1o ∧ ( 𝐵 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = ∅ ) ∨ ( ( 𝐴 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = 1o ∧ ( 𝐵 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = 2o ) ∨ ( ( 𝐴 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = ∅ ∧ ( 𝐵 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = 2o ) ) → ( ( 𝐴 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = 1o ∧ ( 𝐵 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = 2o ) ) ) |
41 |
27 39 40
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ) ∧ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ∈ ( bday ‘ 𝐴 ) ) → ( ( ( ( 𝐴 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = 1o ∧ ( 𝐵 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = ∅ ) ∨ ( ( 𝐴 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = 1o ∧ ( 𝐵 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = 2o ) ∨ ( ( 𝐴 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = ∅ ∧ ( 𝐵 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = 2o ) ) → ( ( 𝐴 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = 1o ∧ ( 𝐵 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = 2o ) ) ) |
42 |
41
|
ex |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ) → ( ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ∈ ( bday ‘ 𝐴 ) → ( ( ( ( 𝐴 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = 1o ∧ ( 𝐵 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = ∅ ) ∨ ( ( 𝐴 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = 1o ∧ ( 𝐵 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = 2o ) ∨ ( ( 𝐴 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = ∅ ∧ ( 𝐵 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = 2o ) ) → ( ( 𝐴 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = 1o ∧ ( 𝐵 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = 2o ) ) ) ) |
43 |
42
|
com23 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ) → ( ( ( ( 𝐴 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = 1o ∧ ( 𝐵 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = ∅ ) ∨ ( ( 𝐴 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = 1o ∧ ( 𝐵 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = 2o ) ∨ ( ( 𝐴 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = ∅ ∧ ( 𝐵 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = 2o ) ) → ( ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ∈ ( bday ‘ 𝐴 ) → ( ( 𝐴 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = 1o ∧ ( 𝐵 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = 2o ) ) ) ) |
44 |
8 43
|
syl5bi |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ) → ( ( 𝐴 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝐵 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) → ( ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ∈ ( bday ‘ 𝐴 ) → ( ( 𝐴 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = 1o ∧ ( 𝐵 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = 2o ) ) ) ) |
45 |
5 44
|
sylbid |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ) → ( 𝐴 <s 𝐵 → ( ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ∈ ( bday ‘ 𝐴 ) → ( ( 𝐴 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = 1o ∧ ( 𝐵 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = 2o ) ) ) ) |
46 |
3 45
|
mpdd |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ) → ( 𝐴 <s 𝐵 → ( ( 𝐴 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = 1o ∧ ( 𝐵 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = 2o ) ) ) |
47 |
|
3mix2 |
⊢ ( ( ( 𝐴 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = 1o ∧ ( 𝐵 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = 2o ) → ( ( ( 𝐴 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = 1o ∧ ( 𝐵 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = ∅ ) ∨ ( ( 𝐴 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = 1o ∧ ( 𝐵 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = 2o ) ∨ ( ( 𝐴 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = ∅ ∧ ( 𝐵 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = 2o ) ) ) |
48 |
47 8
|
sylibr |
⊢ ( ( ( 𝐴 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = 1o ∧ ( 𝐵 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = 2o ) → ( 𝐴 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝐵 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) ) |
49 |
48 5
|
syl5ibr |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ) → ( ( ( 𝐴 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = 1o ∧ ( 𝐵 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = 2o ) → 𝐴 <s 𝐵 ) ) |
50 |
46 49
|
impbid |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ) → ( 𝐴 <s 𝐵 ↔ ( ( 𝐴 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = 1o ∧ ( 𝐵 ‘ ∩ { 𝑎 ∈ On ∣ ( 𝐴 ‘ 𝑎 ) ≠ ( 𝐵 ‘ 𝑎 ) } ) = 2o ) ) ) |