Step |
Hyp |
Ref |
Expression |
1 |
|
simpll |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( bday ` A ) = ( bday ` B ) /\ A A e. No ) |
2 |
|
simplr |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( bday ` A ) = ( bday ` B ) /\ A B e. No ) |
3 |
|
sltso |
|- |
4 |
|
sonr |
|- ( ( -. A |
5 |
3 4
|
mpan |
|- ( A e. No -> -. A |
6 |
|
breq2 |
|- ( A = B -> ( A A |
7 |
6
|
notbid |
|- ( A = B -> ( -. A -. A |
8 |
5 7
|
syl5ibcom |
|- ( A e. No -> ( A = B -> -. A |
9 |
8
|
necon2ad |
|- ( A e. No -> ( A A =/= B ) ) |
10 |
9
|
adantr |
|- ( ( A e. No /\ B e. No ) -> ( A A =/= B ) ) |
11 |
10
|
imp |
|- ( ( ( A e. No /\ B e. No ) /\ A A =/= B ) |
12 |
11
|
adantrl |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( bday ` A ) = ( bday ` B ) /\ A A =/= B ) |
13 |
|
nosepdm |
|- ( ( A e. No /\ B e. No /\ A =/= B ) -> |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. ( dom A u. dom B ) ) |
14 |
1 2 12 13
|
syl3anc |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( bday ` A ) = ( bday ` B ) /\ A |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. ( dom A u. dom B ) ) |
15 |
|
simprl |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( bday ` A ) = ( bday ` B ) /\ A ( bday ` A ) = ( bday ` B ) ) |
16 |
15
|
uneq2d |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( bday ` A ) = ( bday ` B ) /\ A ( ( bday ` A ) u. ( bday ` A ) ) = ( ( bday ` A ) u. ( bday ` B ) ) ) |
17 |
|
unidm |
|- ( ( bday ` A ) u. ( bday ` A ) ) = ( bday ` A ) |
18 |
16 17
|
eqtr3di |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( bday ` A ) = ( bday ` B ) /\ A ( ( bday ` A ) u. ( bday ` B ) ) = ( bday ` A ) ) |
19 |
|
bdayval |
|- ( A e. No -> ( bday ` A ) = dom A ) |
20 |
1 19
|
syl |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( bday ` A ) = ( bday ` B ) /\ A ( bday ` A ) = dom A ) |
21 |
|
bdayval |
|- ( B e. No -> ( bday ` B ) = dom B ) |
22 |
2 21
|
syl |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( bday ` A ) = ( bday ` B ) /\ A ( bday ` B ) = dom B ) |
23 |
20 22
|
uneq12d |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( bday ` A ) = ( bday ` B ) /\ A ( ( bday ` A ) u. ( bday ` B ) ) = ( dom A u. dom B ) ) |
24 |
18 23 20
|
3eqtr3d |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( bday ` A ) = ( bday ` B ) /\ A ( dom A u. dom B ) = dom A ) |
25 |
14 24
|
eleqtrd |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( bday ` A ) = ( bday ` B ) /\ A |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. dom A ) |
26 |
25 20
|
eleqtrrd |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( bday ` A ) = ( bday ` B ) /\ A |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. ( bday ` A ) ) |