Step |
Hyp |
Ref |
Expression |
1 |
|
nodenselem6 |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( bday ` A ) = ( bday ` B ) /\ A ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) e. No ) |
2 |
|
bdayval |
|- ( ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) e. No -> ( bday ` ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ) = dom ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ) |
3 |
1 2
|
syl |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( bday ` A ) = ( bday ` B ) /\ A ( bday ` ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ) = dom ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ) |
4 |
|
dmres |
|- dom ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = ( |^| { a e. On | ( A ` a ) =/= ( B ` a ) } i^i dom A ) |
5 |
|
nodenselem5 |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( bday ` A ) = ( bday ` B ) /\ A |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. ( bday ` A ) ) |
6 |
|
bdayfo |
|- bday : No -onto-> On |
7 |
|
fof |
|- ( bday : No -onto-> On -> bday : No --> On ) |
8 |
6 7
|
ax-mp |
|- bday : No --> On |
9 |
|
0elon |
|- (/) e. On |
10 |
8 9
|
f0cli |
|- ( bday ` A ) e. On |
11 |
10
|
onelssi |
|- ( |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. ( bday ` A ) -> |^| { a e. On | ( A ` a ) =/= ( B ` a ) } C_ ( bday ` A ) ) |
12 |
5 11
|
syl |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( bday ` A ) = ( bday ` B ) /\ A |^| { a e. On | ( A ` a ) =/= ( B ` a ) } C_ ( bday ` A ) ) |
13 |
|
bdayval |
|- ( A e. No -> ( bday ` A ) = dom A ) |
14 |
13
|
ad2antrr |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( bday ` A ) = ( bday ` B ) /\ A ( bday ` A ) = dom A ) |
15 |
12 14
|
sseqtrd |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( bday ` A ) = ( bday ` B ) /\ A |^| { a e. On | ( A ` a ) =/= ( B ` a ) } C_ dom A ) |
16 |
|
df-ss |
|- ( |^| { a e. On | ( A ` a ) =/= ( B ` a ) } C_ dom A <-> ( |^| { a e. On | ( A ` a ) =/= ( B ` a ) } i^i dom A ) = |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) |
17 |
15 16
|
sylib |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( bday ` A ) = ( bday ` B ) /\ A ( |^| { a e. On | ( A ` a ) =/= ( B ` a ) } i^i dom A ) = |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) |
18 |
4 17
|
eqtrid |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( bday ` A ) = ( bday ` B ) /\ A dom ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) |
19 |
3 18
|
eqtrd |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( bday ` A ) = ( bday ` B ) /\ A ( bday ` ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ) = |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) |
20 |
19 5
|
eqeltrd |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( bday ` A ) = ( bday ` B ) /\ A ( bday ` ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ) e. ( bday ` A ) ) |
21 |
|
nodenselem4 |
|- ( ( ( A e. No /\ B e. No ) /\ A |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. On ) |
22 |
21
|
adantrl |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( bday ` A ) = ( bday ` B ) /\ A |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. On ) |
23 |
|
nodenselem8 |
|- ( ( A e. No /\ B e. No /\ ( bday ` A ) = ( bday ` B ) ) -> ( A ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 1o /\ ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 2o ) ) ) |
24 |
23
|
biimpd |
|- ( ( A e. No /\ B e. No /\ ( bday ` A ) = ( bday ` B ) ) -> ( A ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 1o /\ ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 2o ) ) ) |
25 |
24
|
3expia |
|- ( ( A e. No /\ B e. No ) -> ( ( bday ` A ) = ( bday ` B ) -> ( A ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 1o /\ ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 2o ) ) ) ) |
26 |
25
|
imp32 |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( bday ` A ) = ( bday ` B ) /\ A ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 1o /\ ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 2o ) ) |
27 |
26
|
simpld |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( bday ` A ) = ( bday ` B ) /\ A ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 1o ) |
28 |
|
eqid |
|- (/) = (/) |
29 |
27 28
|
jctir |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( bday ` A ) = ( bday ` B ) /\ A ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 1o /\ (/) = (/) ) ) |
30 |
29
|
3mix1d |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( bday ` A ) = ( bday ` B ) /\ A ( ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 1o /\ (/) = (/) ) \/ ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 1o /\ (/) = 2o ) \/ ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = (/) /\ (/) = 2o ) ) ) |
31 |
|
fvex |
|- ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) e. _V |
32 |
|
0ex |
|- (/) e. _V |
33 |
31 32
|
brtp |
|- ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } (/) <-> ( ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 1o /\ (/) = (/) ) \/ ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 1o /\ (/) = 2o ) \/ ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = (/) /\ (/) = 2o ) ) ) |
34 |
30 33
|
sylibr |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( bday ` A ) = ( bday ` B ) /\ A ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } (/) ) |
35 |
19
|
fveq2d |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( bday ` A ) = ( bday ` B ) /\ A ( ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ` ( bday ` ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ) ) = ( ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ) |
36 |
|
fvnobday |
|- ( ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) e. No -> ( ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ` ( bday ` ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ) ) = (/) ) |
37 |
1 36
|
syl |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( bday ` A ) = ( bday ` B ) /\ A ( ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ` ( bday ` ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ) ) = (/) ) |
38 |
35 37
|
eqtr3d |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( bday ` A ) = ( bday ` B ) /\ A ( ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = (/) ) |
39 |
34 38
|
breqtrrd |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( bday ` A ) = ( bday ` B ) /\ A ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ) |
40 |
|
fvres |
|- ( y e. |^| { a e. On | ( A ` a ) =/= ( B ` a ) } -> ( ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ` y ) = ( A ` y ) ) |
41 |
40
|
eqcomd |
|- ( y e. |^| { a e. On | ( A ` a ) =/= ( B ` a ) } -> ( A ` y ) = ( ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ` y ) ) |
42 |
41
|
rgen |
|- A. y e. |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ( A ` y ) = ( ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ` y ) |
43 |
39 42
|
jctil |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( bday ` A ) = ( bday ` B ) /\ A ( A. y e. |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ( A ` y ) = ( ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ` y ) /\ ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ) ) |
44 |
|
raleq |
|- ( x = |^| { a e. On | ( A ` a ) =/= ( B ` a ) } -> ( A. y e. x ( A ` y ) = ( ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ` y ) <-> A. y e. |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ( A ` y ) = ( ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ` y ) ) ) |
45 |
|
fveq2 |
|- ( x = |^| { a e. On | ( A ` a ) =/= ( B ` a ) } -> ( A ` x ) = ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ) |
46 |
|
fveq2 |
|- ( x = |^| { a e. On | ( A ` a ) =/= ( B ` a ) } -> ( ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ` x ) = ( ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ) |
47 |
45 46
|
breq12d |
|- ( x = |^| { a e. On | ( A ` a ) =/= ( B ` a ) } -> ( ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ` x ) <-> ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ) ) |
48 |
44 47
|
anbi12d |
|- ( x = |^| { a e. On | ( A ` a ) =/= ( B ` a ) } -> ( ( A. y e. x ( A ` y ) = ( ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ` y ) /\ ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ` x ) ) <-> ( A. y e. |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ( A ` y ) = ( ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ` y ) /\ ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ) ) ) |
49 |
48
|
rspcev |
|- ( ( |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. On /\ ( A. y e. |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ( A ` y ) = ( ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ` y ) /\ ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ) ) -> E. x e. On ( A. y e. x ( A ` y ) = ( ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ` y ) /\ ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ` x ) ) ) |
50 |
22 43 49
|
syl2anc |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( bday ` A ) = ( bday ` B ) /\ A E. x e. On ( A. y e. x ( A ` y ) = ( ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ` y ) /\ ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ` x ) ) ) |
51 |
|
simpll |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( bday ` A ) = ( bday ` B ) /\ A A e. No ) |
52 |
|
sltval |
|- ( ( A e. No /\ ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) e. No ) -> ( A E. x e. On ( A. y e. x ( A ` y ) = ( ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ` y ) /\ ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ` x ) ) ) ) |
53 |
51 1 52
|
syl2anc |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( bday ` A ) = ( bday ` B ) /\ A ( A E. x e. On ( A. y e. x ( A ` y ) = ( ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ` y ) /\ ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ` x ) ) ) ) |
54 |
50 53
|
mpbird |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( bday ` A ) = ( bday ` B ) /\ A A |
55 |
41
|
adantl |
|- ( ( ( ( A e. No /\ B e. No ) /\ ( ( bday ` A ) = ( bday ` B ) /\ A ( A ` y ) = ( ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ` y ) ) |
56 |
|
nodenselem7 |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( bday ` A ) = ( bday ` B ) /\ A ( y e. |^| { a e. On | ( A ` a ) =/= ( B ` a ) } -> ( A ` y ) = ( B ` y ) ) ) |
57 |
56
|
imp |
|- ( ( ( ( A e. No /\ B e. No ) /\ ( ( bday ` A ) = ( bday ` B ) /\ A ( A ` y ) = ( B ` y ) ) |
58 |
55 57
|
eqtr3d |
|- ( ( ( ( A e. No /\ B e. No ) /\ ( ( bday ` A ) = ( bday ` B ) /\ A ( ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ` y ) = ( B ` y ) ) |
59 |
58
|
ralrimiva |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( bday ` A ) = ( bday ` B ) /\ A A. y e. |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ( ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ` y ) = ( B ` y ) ) |
60 |
26
|
simprd |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( bday ` A ) = ( bday ` B ) /\ A ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 2o ) |
61 |
60 28
|
jctil |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( bday ` A ) = ( bday ` B ) /\ A ( (/) = (/) /\ ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 2o ) ) |
62 |
61
|
3mix3d |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( bday ` A ) = ( bday ` B ) /\ A ( ( (/) = 1o /\ ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = (/) ) \/ ( (/) = 1o /\ ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 2o ) \/ ( (/) = (/) /\ ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 2o ) ) ) |
63 |
|
fvex |
|- ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) e. _V |
64 |
32 63
|
brtp |
|- ( (/) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) <-> ( ( (/) = 1o /\ ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = (/) ) \/ ( (/) = 1o /\ ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 2o ) \/ ( (/) = (/) /\ ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 2o ) ) ) |
65 |
62 64
|
sylibr |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( bday ` A ) = ( bday ` B ) /\ A (/) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ) |
66 |
38 65
|
eqbrtrd |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( bday ` A ) = ( bday ` B ) /\ A ( ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ) |
67 |
|
raleq |
|- ( x = |^| { a e. On | ( A ` a ) =/= ( B ` a ) } -> ( A. y e. x ( ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ` y ) = ( B ` y ) <-> A. y e. |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ( ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ` y ) = ( B ` y ) ) ) |
68 |
|
fveq2 |
|- ( x = |^| { a e. On | ( A ` a ) =/= ( B ` a ) } -> ( B ` x ) = ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ) |
69 |
46 68
|
breq12d |
|- ( x = |^| { a e. On | ( A ` a ) =/= ( B ` a ) } -> ( ( ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) <-> ( ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ) ) |
70 |
67 69
|
anbi12d |
|- ( x = |^| { a e. On | ( A ` a ) =/= ( B ` a ) } -> ( ( A. y e. x ( ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ` y ) = ( B ` y ) /\ ( ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) ) <-> ( A. y e. |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ( ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ` y ) = ( B ` y ) /\ ( ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ) ) ) |
71 |
70
|
rspcev |
|- ( ( |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. On /\ ( A. y e. |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ( ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ` y ) = ( B ` y ) /\ ( ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ) ) -> E. x e. On ( A. y e. x ( ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ` y ) = ( B ` y ) /\ ( ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) ) ) |
72 |
22 59 66 71
|
syl12anc |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( bday ` A ) = ( bday ` B ) /\ A E. x e. On ( A. y e. x ( ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ` y ) = ( B ` y ) /\ ( ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) ) ) |
73 |
|
simplr |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( bday ` A ) = ( bday ` B ) /\ A B e. No ) |
74 |
|
sltval |
|- ( ( ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) e. No /\ B e. No ) -> ( ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) E. x e. On ( A. y e. x ( ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ` y ) = ( B ` y ) /\ ( ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) ) ) ) |
75 |
1 73 74
|
syl2anc |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( bday ` A ) = ( bday ` B ) /\ A ( ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) E. x e. On ( A. y e. x ( ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ` y ) = ( B ` y ) /\ ( ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) ) ) ) |
76 |
72 75
|
mpbird |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( bday ` A ) = ( bday ` B ) /\ A ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) |
77 |
|
fveq2 |
|- ( x = ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) -> ( bday ` x ) = ( bday ` ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ) ) |
78 |
77
|
eleq1d |
|- ( x = ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) -> ( ( bday ` x ) e. ( bday ` A ) <-> ( bday ` ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ) e. ( bday ` A ) ) ) |
79 |
|
breq2 |
|- ( x = ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) -> ( A A |
80 |
|
breq1 |
|- ( x = ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) -> ( x ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) |
81 |
78 79 80
|
3anbi123d |
|- ( x = ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) -> ( ( ( bday ` x ) e. ( bday ` A ) /\ A ( ( bday ` ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ) e. ( bday ` A ) /\ A |
82 |
81
|
rspcev |
|- ( ( ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) e. No /\ ( ( bday ` ( A |` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ) e. ( bday ` A ) /\ A E. x e. No ( ( bday ` x ) e. ( bday ` A ) /\ A |
83 |
1 20 54 76 82
|
syl13anc |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( bday ` A ) = ( bday ` B ) /\ A E. x e. No ( ( bday ` x ) e. ( bday ` A ) /\ A |