Metamath Proof Explorer


Theorem nodenselem5

Description: Lemma for nodense . If the birthdays of two distinct surreals are equal, then the ordinal from nodenselem4 is an element of that birthday. (Contributed by Scott Fenton, 16-Jun-2011)

Ref Expression
Assertion nodenselem5 ANoBNobdayA=bdayBA<sBaOn|AaBabdayA

Proof

Step Hyp Ref Expression
1 simpll ANoBNobdayA=bdayBA<sBANo
2 simplr ANoBNobdayA=bdayBA<sBBNo
3 sltso <sOrNo
4 sonr <sOrNoANo¬A<sA
5 3 4 mpan ANo¬A<sA
6 breq2 A=BA<sAA<sB
7 6 notbid A=B¬A<sA¬A<sB
8 5 7 syl5ibcom ANoA=B¬A<sB
9 8 necon2ad ANoA<sBAB
10 9 adantr ANoBNoA<sBAB
11 10 imp ANoBNoA<sBAB
12 11 adantrl ANoBNobdayA=bdayBA<sBAB
13 nosepdm ANoBNoABaOn|AaBadomAdomB
14 1 2 12 13 syl3anc ANoBNobdayA=bdayBA<sBaOn|AaBadomAdomB
15 simprl ANoBNobdayA=bdayBA<sBbdayA=bdayB
16 15 uneq2d ANoBNobdayA=bdayBA<sBbdayAbdayA=bdayAbdayB
17 unidm bdayAbdayA=bdayA
18 16 17 eqtr3di ANoBNobdayA=bdayBA<sBbdayAbdayB=bdayA
19 bdayval ANobdayA=domA
20 1 19 syl ANoBNobdayA=bdayBA<sBbdayA=domA
21 bdayval BNobdayB=domB
22 2 21 syl ANoBNobdayA=bdayBA<sBbdayB=domB
23 20 22 uneq12d ANoBNobdayA=bdayBA<sBbdayAbdayB=domAdomB
24 18 23 20 3eqtr3d ANoBNobdayA=bdayBA<sBdomAdomB=domA
25 14 24 eleqtrd ANoBNobdayA=bdayBA<sBaOn|AaBadomA
26 25 20 eleqtrrd ANoBNobdayA=bdayBA<sBaOn|AaBabdayA