Metamath Proof Explorer


Theorem nosepdm

Description: The first place two surreals differ is an element of the larger of their domains. (Contributed by Scott Fenton, 24-Nov-2021)

Ref Expression
Assertion nosepdm ANoBNoABxOn|AxBxdomAdomB

Proof

Step Hyp Ref Expression
1 sltso <sOrNo
2 sotrine <sOrNoANoBNoABA<sBB<sA
3 1 2 mpan ANoBNoABA<sBB<sA
4 nosepdmlem ANoBNoA<sBxOn|AxBxdomAdomB
5 4 3expa ANoBNoA<sBxOn|AxBxdomAdomB
6 simplr ANoBNoB<sABNo
7 simpll ANoBNoB<sAANo
8 simpr ANoBNoB<sAB<sA
9 nosepdmlem BNoANoB<sAxOn|BxAxdomBdomA
10 6 7 8 9 syl3anc ANoBNoB<sAxOn|BxAxdomBdomA
11 necom AxBxBxAx
12 11 rabbii xOn|AxBx=xOn|BxAx
13 12 inteqi xOn|AxBx=xOn|BxAx
14 uncom domAdomB=domBdomA
15 10 13 14 3eltr4g ANoBNoB<sAxOn|AxBxdomAdomB
16 5 15 jaodan ANoBNoA<sBB<sAxOn|AxBxdomAdomB
17 16 ex ANoBNoA<sBB<sAxOn|AxBxdomAdomB
18 3 17 sylbid ANoBNoABxOn|AxBxdomAdomB
19 18 3impia ANoBNoABxOn|AxBxdomAdomB