Metamath Proof Explorer


Theorem nosepdm

Description: The first place two surreals differ is an element of the larger of their domains. (Contributed by Scott Fenton, 24-Nov-2021)

Ref Expression
Assertion nosepdm ( ( 𝐴 No 𝐵 No 𝐴𝐵 ) → { 𝑥 ∈ On ∣ ( 𝐴𝑥 ) ≠ ( 𝐵𝑥 ) } ∈ ( dom 𝐴 ∪ dom 𝐵 ) )

Proof

Step Hyp Ref Expression
1 sltso <s Or No
2 sotrine ( ( <s Or No ∧ ( 𝐴 No 𝐵 No ) ) → ( 𝐴𝐵 ↔ ( 𝐴 <s 𝐵𝐵 <s 𝐴 ) ) )
3 1 2 mpan ( ( 𝐴 No 𝐵 No ) → ( 𝐴𝐵 ↔ ( 𝐴 <s 𝐵𝐵 <s 𝐴 ) ) )
4 nosepdmlem ( ( 𝐴 No 𝐵 No 𝐴 <s 𝐵 ) → { 𝑥 ∈ On ∣ ( 𝐴𝑥 ) ≠ ( 𝐵𝑥 ) } ∈ ( dom 𝐴 ∪ dom 𝐵 ) )
5 4 3expa ( ( ( 𝐴 No 𝐵 No ) ∧ 𝐴 <s 𝐵 ) → { 𝑥 ∈ On ∣ ( 𝐴𝑥 ) ≠ ( 𝐵𝑥 ) } ∈ ( dom 𝐴 ∪ dom 𝐵 ) )
6 simplr ( ( ( 𝐴 No 𝐵 No ) ∧ 𝐵 <s 𝐴 ) → 𝐵 No )
7 simpll ( ( ( 𝐴 No 𝐵 No ) ∧ 𝐵 <s 𝐴 ) → 𝐴 No )
8 simpr ( ( ( 𝐴 No 𝐵 No ) ∧ 𝐵 <s 𝐴 ) → 𝐵 <s 𝐴 )
9 nosepdmlem ( ( 𝐵 No 𝐴 No 𝐵 <s 𝐴 ) → { 𝑥 ∈ On ∣ ( 𝐵𝑥 ) ≠ ( 𝐴𝑥 ) } ∈ ( dom 𝐵 ∪ dom 𝐴 ) )
10 6 7 8 9 syl3anc ( ( ( 𝐴 No 𝐵 No ) ∧ 𝐵 <s 𝐴 ) → { 𝑥 ∈ On ∣ ( 𝐵𝑥 ) ≠ ( 𝐴𝑥 ) } ∈ ( dom 𝐵 ∪ dom 𝐴 ) )
11 necom ( ( 𝐴𝑥 ) ≠ ( 𝐵𝑥 ) ↔ ( 𝐵𝑥 ) ≠ ( 𝐴𝑥 ) )
12 11 rabbii { 𝑥 ∈ On ∣ ( 𝐴𝑥 ) ≠ ( 𝐵𝑥 ) } = { 𝑥 ∈ On ∣ ( 𝐵𝑥 ) ≠ ( 𝐴𝑥 ) }
13 12 inteqi { 𝑥 ∈ On ∣ ( 𝐴𝑥 ) ≠ ( 𝐵𝑥 ) } = { 𝑥 ∈ On ∣ ( 𝐵𝑥 ) ≠ ( 𝐴𝑥 ) }
14 uncom ( dom 𝐴 ∪ dom 𝐵 ) = ( dom 𝐵 ∪ dom 𝐴 )
15 10 13 14 3eltr4g ( ( ( 𝐴 No 𝐵 No ) ∧ 𝐵 <s 𝐴 ) → { 𝑥 ∈ On ∣ ( 𝐴𝑥 ) ≠ ( 𝐵𝑥 ) } ∈ ( dom 𝐴 ∪ dom 𝐵 ) )
16 5 15 jaodan ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝐴 <s 𝐵𝐵 <s 𝐴 ) ) → { 𝑥 ∈ On ∣ ( 𝐴𝑥 ) ≠ ( 𝐵𝑥 ) } ∈ ( dom 𝐴 ∪ dom 𝐵 ) )
17 16 ex ( ( 𝐴 No 𝐵 No ) → ( ( 𝐴 <s 𝐵𝐵 <s 𝐴 ) → { 𝑥 ∈ On ∣ ( 𝐴𝑥 ) ≠ ( 𝐵𝑥 ) } ∈ ( dom 𝐴 ∪ dom 𝐵 ) ) )
18 3 17 sylbid ( ( 𝐴 No 𝐵 No ) → ( 𝐴𝐵 { 𝑥 ∈ On ∣ ( 𝐴𝑥 ) ≠ ( 𝐵𝑥 ) } ∈ ( dom 𝐴 ∪ dom 𝐵 ) ) )
19 18 3impia ( ( 𝐴 No 𝐵 No 𝐴𝐵 ) → { 𝑥 ∈ On ∣ ( 𝐴𝑥 ) ≠ ( 𝐵𝑥 ) } ∈ ( dom 𝐴 ∪ dom 𝐵 ) )