Metamath Proof Explorer


Theorem sotrine

Description: Trichotomy law for strict orderings. (Contributed by Scott Fenton, 8-Dec-2021)

Ref Expression
Assertion sotrine ( ( 𝑅 Or 𝐴 ∧ ( 𝐵𝐴𝐶𝐴 ) ) → ( 𝐵𝐶 ↔ ( 𝐵 𝑅 𝐶𝐶 𝑅 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 sotrieq ( ( 𝑅 Or 𝐴 ∧ ( 𝐵𝐴𝐶𝐴 ) ) → ( 𝐵 = 𝐶 ↔ ¬ ( 𝐵 𝑅 𝐶𝐶 𝑅 𝐵 ) ) )
2 1 bicomd ( ( 𝑅 Or 𝐴 ∧ ( 𝐵𝐴𝐶𝐴 ) ) → ( ¬ ( 𝐵 𝑅 𝐶𝐶 𝑅 𝐵 ) ↔ 𝐵 = 𝐶 ) )
3 2 necon1abid ( ( 𝑅 Or 𝐴 ∧ ( 𝐵𝐴𝐶𝐴 ) ) → ( 𝐵𝐶 ↔ ( 𝐵 𝑅 𝐶𝐶 𝑅 𝐵 ) ) )