Description: Trichotomy law for strict orderings. (Contributed by Scott Fenton, 8-Dec-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | sotrine | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → ( 𝐵 ≠ 𝐶 ↔ ( 𝐵 𝑅 𝐶 ∨ 𝐶 𝑅 𝐵 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sotrieq | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → ( 𝐵 = 𝐶 ↔ ¬ ( 𝐵 𝑅 𝐶 ∨ 𝐶 𝑅 𝐵 ) ) ) | |
2 | 1 | bicomd | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → ( ¬ ( 𝐵 𝑅 𝐶 ∨ 𝐶 𝑅 𝐵 ) ↔ 𝐵 = 𝐶 ) ) |
3 | 2 | necon1abid | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → ( 𝐵 ≠ 𝐶 ↔ ( 𝐵 𝑅 𝐶 ∨ 𝐶 𝑅 𝐵 ) ) ) |