Step |
Hyp |
Ref |
Expression |
1 |
|
relres |
⊢ Rel ( 𝐹 ↾ ( 𝑋 ∪ { 𝑌 } ) ) |
2 |
|
relres |
⊢ Rel ( 𝐺 ↾ ( 𝑋 ∪ { 𝑌 } ) ) |
3 |
|
breq |
⊢ ( ( 𝐹 ↾ 𝑋 ) = ( 𝐺 ↾ 𝑋 ) → ( 𝑥 ( 𝐹 ↾ 𝑋 ) 𝑦 ↔ 𝑥 ( 𝐺 ↾ 𝑋 ) 𝑦 ) ) |
4 |
3
|
3ad2ant2 |
⊢ ( ( ( Fun 𝐹 ∧ Fun 𝐺 ) ∧ ( 𝐹 ↾ 𝑋 ) = ( 𝐺 ↾ 𝑋 ) ∧ ( 𝑌 ∈ dom 𝐹 ∧ 𝑌 ∈ dom 𝐺 ∧ ( 𝐹 ‘ 𝑌 ) = ( 𝐺 ‘ 𝑌 ) ) ) → ( 𝑥 ( 𝐹 ↾ 𝑋 ) 𝑦 ↔ 𝑥 ( 𝐺 ↾ 𝑋 ) 𝑦 ) ) |
5 |
|
velsn |
⊢ ( 𝑥 ∈ { 𝑌 } ↔ 𝑥 = 𝑌 ) |
6 |
|
simp33 |
⊢ ( ( ( Fun 𝐹 ∧ Fun 𝐺 ) ∧ ( 𝐹 ↾ 𝑋 ) = ( 𝐺 ↾ 𝑋 ) ∧ ( 𝑌 ∈ dom 𝐹 ∧ 𝑌 ∈ dom 𝐺 ∧ ( 𝐹 ‘ 𝑌 ) = ( 𝐺 ‘ 𝑌 ) ) ) → ( 𝐹 ‘ 𝑌 ) = ( 𝐺 ‘ 𝑌 ) ) |
7 |
6
|
eqeq1d |
⊢ ( ( ( Fun 𝐹 ∧ Fun 𝐺 ) ∧ ( 𝐹 ↾ 𝑋 ) = ( 𝐺 ↾ 𝑋 ) ∧ ( 𝑌 ∈ dom 𝐹 ∧ 𝑌 ∈ dom 𝐺 ∧ ( 𝐹 ‘ 𝑌 ) = ( 𝐺 ‘ 𝑌 ) ) ) → ( ( 𝐹 ‘ 𝑌 ) = 𝑦 ↔ ( 𝐺 ‘ 𝑌 ) = 𝑦 ) ) |
8 |
|
simp1l |
⊢ ( ( ( Fun 𝐹 ∧ Fun 𝐺 ) ∧ ( 𝐹 ↾ 𝑋 ) = ( 𝐺 ↾ 𝑋 ) ∧ ( 𝑌 ∈ dom 𝐹 ∧ 𝑌 ∈ dom 𝐺 ∧ ( 𝐹 ‘ 𝑌 ) = ( 𝐺 ‘ 𝑌 ) ) ) → Fun 𝐹 ) |
9 |
|
simp31 |
⊢ ( ( ( Fun 𝐹 ∧ Fun 𝐺 ) ∧ ( 𝐹 ↾ 𝑋 ) = ( 𝐺 ↾ 𝑋 ) ∧ ( 𝑌 ∈ dom 𝐹 ∧ 𝑌 ∈ dom 𝐺 ∧ ( 𝐹 ‘ 𝑌 ) = ( 𝐺 ‘ 𝑌 ) ) ) → 𝑌 ∈ dom 𝐹 ) |
10 |
|
funbrfvb |
⊢ ( ( Fun 𝐹 ∧ 𝑌 ∈ dom 𝐹 ) → ( ( 𝐹 ‘ 𝑌 ) = 𝑦 ↔ 𝑌 𝐹 𝑦 ) ) |
11 |
8 9 10
|
syl2anc |
⊢ ( ( ( Fun 𝐹 ∧ Fun 𝐺 ) ∧ ( 𝐹 ↾ 𝑋 ) = ( 𝐺 ↾ 𝑋 ) ∧ ( 𝑌 ∈ dom 𝐹 ∧ 𝑌 ∈ dom 𝐺 ∧ ( 𝐹 ‘ 𝑌 ) = ( 𝐺 ‘ 𝑌 ) ) ) → ( ( 𝐹 ‘ 𝑌 ) = 𝑦 ↔ 𝑌 𝐹 𝑦 ) ) |
12 |
|
simp1r |
⊢ ( ( ( Fun 𝐹 ∧ Fun 𝐺 ) ∧ ( 𝐹 ↾ 𝑋 ) = ( 𝐺 ↾ 𝑋 ) ∧ ( 𝑌 ∈ dom 𝐹 ∧ 𝑌 ∈ dom 𝐺 ∧ ( 𝐹 ‘ 𝑌 ) = ( 𝐺 ‘ 𝑌 ) ) ) → Fun 𝐺 ) |
13 |
|
simp32 |
⊢ ( ( ( Fun 𝐹 ∧ Fun 𝐺 ) ∧ ( 𝐹 ↾ 𝑋 ) = ( 𝐺 ↾ 𝑋 ) ∧ ( 𝑌 ∈ dom 𝐹 ∧ 𝑌 ∈ dom 𝐺 ∧ ( 𝐹 ‘ 𝑌 ) = ( 𝐺 ‘ 𝑌 ) ) ) → 𝑌 ∈ dom 𝐺 ) |
14 |
|
funbrfvb |
⊢ ( ( Fun 𝐺 ∧ 𝑌 ∈ dom 𝐺 ) → ( ( 𝐺 ‘ 𝑌 ) = 𝑦 ↔ 𝑌 𝐺 𝑦 ) ) |
15 |
12 13 14
|
syl2anc |
⊢ ( ( ( Fun 𝐹 ∧ Fun 𝐺 ) ∧ ( 𝐹 ↾ 𝑋 ) = ( 𝐺 ↾ 𝑋 ) ∧ ( 𝑌 ∈ dom 𝐹 ∧ 𝑌 ∈ dom 𝐺 ∧ ( 𝐹 ‘ 𝑌 ) = ( 𝐺 ‘ 𝑌 ) ) ) → ( ( 𝐺 ‘ 𝑌 ) = 𝑦 ↔ 𝑌 𝐺 𝑦 ) ) |
16 |
7 11 15
|
3bitr3d |
⊢ ( ( ( Fun 𝐹 ∧ Fun 𝐺 ) ∧ ( 𝐹 ↾ 𝑋 ) = ( 𝐺 ↾ 𝑋 ) ∧ ( 𝑌 ∈ dom 𝐹 ∧ 𝑌 ∈ dom 𝐺 ∧ ( 𝐹 ‘ 𝑌 ) = ( 𝐺 ‘ 𝑌 ) ) ) → ( 𝑌 𝐹 𝑦 ↔ 𝑌 𝐺 𝑦 ) ) |
17 |
|
breq1 |
⊢ ( 𝑥 = 𝑌 → ( 𝑥 𝐹 𝑦 ↔ 𝑌 𝐹 𝑦 ) ) |
18 |
|
breq1 |
⊢ ( 𝑥 = 𝑌 → ( 𝑥 𝐺 𝑦 ↔ 𝑌 𝐺 𝑦 ) ) |
19 |
17 18
|
bibi12d |
⊢ ( 𝑥 = 𝑌 → ( ( 𝑥 𝐹 𝑦 ↔ 𝑥 𝐺 𝑦 ) ↔ ( 𝑌 𝐹 𝑦 ↔ 𝑌 𝐺 𝑦 ) ) ) |
20 |
16 19
|
syl5ibrcom |
⊢ ( ( ( Fun 𝐹 ∧ Fun 𝐺 ) ∧ ( 𝐹 ↾ 𝑋 ) = ( 𝐺 ↾ 𝑋 ) ∧ ( 𝑌 ∈ dom 𝐹 ∧ 𝑌 ∈ dom 𝐺 ∧ ( 𝐹 ‘ 𝑌 ) = ( 𝐺 ‘ 𝑌 ) ) ) → ( 𝑥 = 𝑌 → ( 𝑥 𝐹 𝑦 ↔ 𝑥 𝐺 𝑦 ) ) ) |
21 |
5 20
|
syl5bi |
⊢ ( ( ( Fun 𝐹 ∧ Fun 𝐺 ) ∧ ( 𝐹 ↾ 𝑋 ) = ( 𝐺 ↾ 𝑋 ) ∧ ( 𝑌 ∈ dom 𝐹 ∧ 𝑌 ∈ dom 𝐺 ∧ ( 𝐹 ‘ 𝑌 ) = ( 𝐺 ‘ 𝑌 ) ) ) → ( 𝑥 ∈ { 𝑌 } → ( 𝑥 𝐹 𝑦 ↔ 𝑥 𝐺 𝑦 ) ) ) |
22 |
21
|
pm5.32d |
⊢ ( ( ( Fun 𝐹 ∧ Fun 𝐺 ) ∧ ( 𝐹 ↾ 𝑋 ) = ( 𝐺 ↾ 𝑋 ) ∧ ( 𝑌 ∈ dom 𝐹 ∧ 𝑌 ∈ dom 𝐺 ∧ ( 𝐹 ‘ 𝑌 ) = ( 𝐺 ‘ 𝑌 ) ) ) → ( ( 𝑥 ∈ { 𝑌 } ∧ 𝑥 𝐹 𝑦 ) ↔ ( 𝑥 ∈ { 𝑌 } ∧ 𝑥 𝐺 𝑦 ) ) ) |
23 |
|
vex |
⊢ 𝑦 ∈ V |
24 |
23
|
brresi |
⊢ ( 𝑥 ( 𝐹 ↾ { 𝑌 } ) 𝑦 ↔ ( 𝑥 ∈ { 𝑌 } ∧ 𝑥 𝐹 𝑦 ) ) |
25 |
23
|
brresi |
⊢ ( 𝑥 ( 𝐺 ↾ { 𝑌 } ) 𝑦 ↔ ( 𝑥 ∈ { 𝑌 } ∧ 𝑥 𝐺 𝑦 ) ) |
26 |
22 24 25
|
3bitr4g |
⊢ ( ( ( Fun 𝐹 ∧ Fun 𝐺 ) ∧ ( 𝐹 ↾ 𝑋 ) = ( 𝐺 ↾ 𝑋 ) ∧ ( 𝑌 ∈ dom 𝐹 ∧ 𝑌 ∈ dom 𝐺 ∧ ( 𝐹 ‘ 𝑌 ) = ( 𝐺 ‘ 𝑌 ) ) ) → ( 𝑥 ( 𝐹 ↾ { 𝑌 } ) 𝑦 ↔ 𝑥 ( 𝐺 ↾ { 𝑌 } ) 𝑦 ) ) |
27 |
4 26
|
orbi12d |
⊢ ( ( ( Fun 𝐹 ∧ Fun 𝐺 ) ∧ ( 𝐹 ↾ 𝑋 ) = ( 𝐺 ↾ 𝑋 ) ∧ ( 𝑌 ∈ dom 𝐹 ∧ 𝑌 ∈ dom 𝐺 ∧ ( 𝐹 ‘ 𝑌 ) = ( 𝐺 ‘ 𝑌 ) ) ) → ( ( 𝑥 ( 𝐹 ↾ 𝑋 ) 𝑦 ∨ 𝑥 ( 𝐹 ↾ { 𝑌 } ) 𝑦 ) ↔ ( 𝑥 ( 𝐺 ↾ 𝑋 ) 𝑦 ∨ 𝑥 ( 𝐺 ↾ { 𝑌 } ) 𝑦 ) ) ) |
28 |
|
resundi |
⊢ ( 𝐹 ↾ ( 𝑋 ∪ { 𝑌 } ) ) = ( ( 𝐹 ↾ 𝑋 ) ∪ ( 𝐹 ↾ { 𝑌 } ) ) |
29 |
28
|
breqi |
⊢ ( 𝑥 ( 𝐹 ↾ ( 𝑋 ∪ { 𝑌 } ) ) 𝑦 ↔ 𝑥 ( ( 𝐹 ↾ 𝑋 ) ∪ ( 𝐹 ↾ { 𝑌 } ) ) 𝑦 ) |
30 |
|
brun |
⊢ ( 𝑥 ( ( 𝐹 ↾ 𝑋 ) ∪ ( 𝐹 ↾ { 𝑌 } ) ) 𝑦 ↔ ( 𝑥 ( 𝐹 ↾ 𝑋 ) 𝑦 ∨ 𝑥 ( 𝐹 ↾ { 𝑌 } ) 𝑦 ) ) |
31 |
29 30
|
bitri |
⊢ ( 𝑥 ( 𝐹 ↾ ( 𝑋 ∪ { 𝑌 } ) ) 𝑦 ↔ ( 𝑥 ( 𝐹 ↾ 𝑋 ) 𝑦 ∨ 𝑥 ( 𝐹 ↾ { 𝑌 } ) 𝑦 ) ) |
32 |
|
resundi |
⊢ ( 𝐺 ↾ ( 𝑋 ∪ { 𝑌 } ) ) = ( ( 𝐺 ↾ 𝑋 ) ∪ ( 𝐺 ↾ { 𝑌 } ) ) |
33 |
32
|
breqi |
⊢ ( 𝑥 ( 𝐺 ↾ ( 𝑋 ∪ { 𝑌 } ) ) 𝑦 ↔ 𝑥 ( ( 𝐺 ↾ 𝑋 ) ∪ ( 𝐺 ↾ { 𝑌 } ) ) 𝑦 ) |
34 |
|
brun |
⊢ ( 𝑥 ( ( 𝐺 ↾ 𝑋 ) ∪ ( 𝐺 ↾ { 𝑌 } ) ) 𝑦 ↔ ( 𝑥 ( 𝐺 ↾ 𝑋 ) 𝑦 ∨ 𝑥 ( 𝐺 ↾ { 𝑌 } ) 𝑦 ) ) |
35 |
33 34
|
bitri |
⊢ ( 𝑥 ( 𝐺 ↾ ( 𝑋 ∪ { 𝑌 } ) ) 𝑦 ↔ ( 𝑥 ( 𝐺 ↾ 𝑋 ) 𝑦 ∨ 𝑥 ( 𝐺 ↾ { 𝑌 } ) 𝑦 ) ) |
36 |
27 31 35
|
3bitr4g |
⊢ ( ( ( Fun 𝐹 ∧ Fun 𝐺 ) ∧ ( 𝐹 ↾ 𝑋 ) = ( 𝐺 ↾ 𝑋 ) ∧ ( 𝑌 ∈ dom 𝐹 ∧ 𝑌 ∈ dom 𝐺 ∧ ( 𝐹 ‘ 𝑌 ) = ( 𝐺 ‘ 𝑌 ) ) ) → ( 𝑥 ( 𝐹 ↾ ( 𝑋 ∪ { 𝑌 } ) ) 𝑦 ↔ 𝑥 ( 𝐺 ↾ ( 𝑋 ∪ { 𝑌 } ) ) 𝑦 ) ) |
37 |
1 2 36
|
eqbrrdiv |
⊢ ( ( ( Fun 𝐹 ∧ Fun 𝐺 ) ∧ ( 𝐹 ↾ 𝑋 ) = ( 𝐺 ↾ 𝑋 ) ∧ ( 𝑌 ∈ dom 𝐹 ∧ 𝑌 ∈ dom 𝐺 ∧ ( 𝐹 ‘ 𝑌 ) = ( 𝐺 ‘ 𝑌 ) ) ) → ( 𝐹 ↾ ( 𝑋 ∪ { 𝑌 } ) ) = ( 𝐺 ↾ ( 𝑋 ∪ { 𝑌 } ) ) ) |