Step |
Hyp |
Ref |
Expression |
1 |
|
sltval2 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 <s 𝐵 ↔ ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) ) ) |
2 |
|
fvex |
⊢ ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) ∈ V |
3 |
|
fvex |
⊢ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) ∈ V |
4 |
2 3
|
brtp |
⊢ ( ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) ↔ ( ( ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 1o ∧ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = ∅ ) ∨ ( ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 1o ∧ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 2o ) ∨ ( ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = ∅ ∧ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 2o ) ) ) |
5 |
|
df-3or |
⊢ ( ( ( ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 1o ∧ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = ∅ ) ∨ ( ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 1o ∧ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 2o ) ∨ ( ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = ∅ ∧ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 2o ) ) ↔ ( ( ( ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 1o ∧ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = ∅ ) ∨ ( ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 1o ∧ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 2o ) ) ∨ ( ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = ∅ ∧ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 2o ) ) ) |
6 |
|
ndmfv |
⊢ ( ¬ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ∈ dom 𝐴 → ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = ∅ ) |
7 |
|
1oex |
⊢ 1o ∈ V |
8 |
7
|
prid1 |
⊢ 1o ∈ { 1o , 2o } |
9 |
8
|
nosgnn0i |
⊢ ∅ ≠ 1o |
10 |
|
neeq1 |
⊢ ( ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = ∅ → ( ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) ≠ 1o ↔ ∅ ≠ 1o ) ) |
11 |
9 10
|
mpbiri |
⊢ ( ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = ∅ → ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) ≠ 1o ) |
12 |
11
|
neneqd |
⊢ ( ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = ∅ → ¬ ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 1o ) |
13 |
12
|
intnanrd |
⊢ ( ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = ∅ → ¬ ( ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 1o ∧ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = ∅ ) ) |
14 |
12
|
intnanrd |
⊢ ( ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = ∅ → ¬ ( ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 1o ∧ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 2o ) ) |
15 |
|
ioran |
⊢ ( ¬ ( ( ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 1o ∧ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = ∅ ) ∨ ( ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 1o ∧ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 2o ) ) ↔ ( ¬ ( ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 1o ∧ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = ∅ ) ∧ ¬ ( ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 1o ∧ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 2o ) ) ) |
16 |
13 14 15
|
sylanbrc |
⊢ ( ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = ∅ → ¬ ( ( ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 1o ∧ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = ∅ ) ∨ ( ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 1o ∧ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 2o ) ) ) |
17 |
6 16
|
syl |
⊢ ( ¬ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ∈ dom 𝐴 → ¬ ( ( ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 1o ∧ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = ∅ ) ∨ ( ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 1o ∧ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 2o ) ) ) |
18 |
17
|
adantl |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ¬ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ∈ dom 𝐴 ) → ¬ ( ( ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 1o ∧ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = ∅ ) ∨ ( ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 1o ∧ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 2o ) ) ) |
19 |
|
orel1 |
⊢ ( ¬ ( ( ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 1o ∧ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = ∅ ) ∨ ( ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 1o ∧ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 2o ) ) → ( ( ( ( ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 1o ∧ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = ∅ ) ∨ ( ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 1o ∧ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 2o ) ) ∨ ( ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = ∅ ∧ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 2o ) ) → ( ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = ∅ ∧ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 2o ) ) ) |
20 |
18 19
|
syl |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ¬ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ∈ dom 𝐴 ) → ( ( ( ( ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 1o ∧ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = ∅ ) ∨ ( ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 1o ∧ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 2o ) ) ∨ ( ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = ∅ ∧ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 2o ) ) → ( ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = ∅ ∧ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 2o ) ) ) |
21 |
5 20
|
syl5bi |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ¬ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ∈ dom 𝐴 ) → ( ( ( ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 1o ∧ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = ∅ ) ∨ ( ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 1o ∧ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 2o ) ∨ ( ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = ∅ ∧ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 2o ) ) → ( ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = ∅ ∧ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 2o ) ) ) |
22 |
|
ndmfv |
⊢ ( ¬ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ∈ dom 𝐵 → ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = ∅ ) |
23 |
|
2on |
⊢ 2o ∈ On |
24 |
23
|
elexi |
⊢ 2o ∈ V |
25 |
24
|
prid2 |
⊢ 2o ∈ { 1o , 2o } |
26 |
25
|
nosgnn0i |
⊢ ∅ ≠ 2o |
27 |
|
neeq1 |
⊢ ( ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = ∅ → ( ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) ≠ 2o ↔ ∅ ≠ 2o ) ) |
28 |
26 27
|
mpbiri |
⊢ ( ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = ∅ → ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) ≠ 2o ) |
29 |
22 28
|
syl |
⊢ ( ¬ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ∈ dom 𝐵 → ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) ≠ 2o ) |
30 |
29
|
neneqd |
⊢ ( ¬ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ∈ dom 𝐵 → ¬ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 2o ) |
31 |
30
|
con4i |
⊢ ( ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 2o → ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ∈ dom 𝐵 ) |
32 |
31
|
adantl |
⊢ ( ( ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = ∅ ∧ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 2o ) → ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ∈ dom 𝐵 ) |
33 |
21 32
|
syl6 |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ¬ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ∈ dom 𝐴 ) → ( ( ( ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 1o ∧ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = ∅ ) ∨ ( ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 1o ∧ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 2o ) ∨ ( ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = ∅ ∧ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 2o ) ) → ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ∈ dom 𝐵 ) ) |
34 |
33
|
ex |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ¬ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ∈ dom 𝐴 → ( ( ( ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 1o ∧ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = ∅ ) ∨ ( ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 1o ∧ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 2o ) ∨ ( ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = ∅ ∧ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 2o ) ) → ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ∈ dom 𝐵 ) ) ) |
35 |
34
|
com23 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ( ( ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 1o ∧ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = ∅ ) ∨ ( ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 1o ∧ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 2o ) ∨ ( ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = ∅ ∧ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 2o ) ) → ( ¬ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ∈ dom 𝐴 → ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ∈ dom 𝐵 ) ) ) |
36 |
4 35
|
syl5bi |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) → ( ¬ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ∈ dom 𝐴 → ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ∈ dom 𝐵 ) ) ) |
37 |
1 36
|
sylbid |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 <s 𝐵 → ( ¬ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ∈ dom 𝐴 → ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ∈ dom 𝐵 ) ) ) |
38 |
37
|
3impia |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 <s 𝐵 ) → ( ¬ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ∈ dom 𝐴 → ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ∈ dom 𝐵 ) ) |
39 |
38
|
orrd |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 <s 𝐵 ) → ( ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ∈ dom 𝐴 ∨ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ∈ dom 𝐵 ) ) |
40 |
|
elun |
⊢ ( ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ∈ ( dom 𝐴 ∪ dom 𝐵 ) ↔ ( ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ∈ dom 𝐴 ∨ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ∈ dom 𝐵 ) ) |
41 |
39 40
|
sylibr |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 <s 𝐵 ) → ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ∈ ( dom 𝐴 ∪ dom 𝐵 ) ) |