Metamath Proof Explorer


Theorem nosgnn0i

Description: If X is a surreal sign, then it is not null. (Contributed by Scott Fenton, 3-Aug-2011)

Ref Expression
Hypothesis nosgnn0i.1 𝑋 ∈ { 1o , 2o }
Assertion nosgnn0i ∅ ≠ 𝑋

Proof

Step Hyp Ref Expression
1 nosgnn0i.1 𝑋 ∈ { 1o , 2o }
2 nosgnn0 ¬ ∅ ∈ { 1o , 2o }
3 eleq1 ( ∅ = 𝑋 → ( ∅ ∈ { 1o , 2o } ↔ 𝑋 ∈ { 1o , 2o } ) )
4 1 3 mpbiri ( ∅ = 𝑋 → ∅ ∈ { 1o , 2o } )
5 2 4 mto ¬ ∅ = 𝑋
6 5 neir ∅ ≠ 𝑋