Metamath Proof Explorer


Theorem nosgnn0i

Description: If X is a surreal sign, then it is not null. (Contributed by Scott Fenton, 3-Aug-2011)

Ref Expression
Hypothesis nosgnn0i.1
|- X e. { 1o , 2o }
Assertion nosgnn0i
|- (/) =/= X

Proof

Step Hyp Ref Expression
1 nosgnn0i.1
 |-  X e. { 1o , 2o }
2 nosgnn0
 |-  -. (/) e. { 1o , 2o }
3 eleq1
 |-  ( (/) = X -> ( (/) e. { 1o , 2o } <-> X e. { 1o , 2o } ) )
4 1 3 mpbiri
 |-  ( (/) = X -> (/) e. { 1o , 2o } )
5 2 4 mto
 |-  -. (/) = X
6 5 neir
 |-  (/) =/= X