Step |
Hyp |
Ref |
Expression |
1 |
|
sltval2 |
|- ( ( A e. No /\ B e. No ) -> ( A ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) ) ) |
2 |
|
fvex |
|- ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) e. _V |
3 |
|
fvex |
|- ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) e. _V |
4 |
2 3
|
brtp |
|- ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) <-> ( ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 1o /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = (/) ) \/ ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 1o /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 2o ) \/ ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = (/) /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 2o ) ) ) |
5 |
|
df-3or |
|- ( ( ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 1o /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = (/) ) \/ ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 1o /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 2o ) \/ ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = (/) /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 2o ) ) <-> ( ( ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 1o /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = (/) ) \/ ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 1o /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 2o ) ) \/ ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = (/) /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 2o ) ) ) |
6 |
|
ndmfv |
|- ( -. |^| { x e. On | ( A ` x ) =/= ( B ` x ) } e. dom A -> ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = (/) ) |
7 |
|
1oex |
|- 1o e. _V |
8 |
7
|
prid1 |
|- 1o e. { 1o , 2o } |
9 |
8
|
nosgnn0i |
|- (/) =/= 1o |
10 |
|
neeq1 |
|- ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = (/) -> ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) =/= 1o <-> (/) =/= 1o ) ) |
11 |
9 10
|
mpbiri |
|- ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = (/) -> ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) =/= 1o ) |
12 |
11
|
neneqd |
|- ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = (/) -> -. ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 1o ) |
13 |
12
|
intnanrd |
|- ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = (/) -> -. ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 1o /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = (/) ) ) |
14 |
12
|
intnanrd |
|- ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = (/) -> -. ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 1o /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 2o ) ) |
15 |
|
ioran |
|- ( -. ( ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 1o /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = (/) ) \/ ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 1o /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 2o ) ) <-> ( -. ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 1o /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = (/) ) /\ -. ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 1o /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 2o ) ) ) |
16 |
13 14 15
|
sylanbrc |
|- ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = (/) -> -. ( ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 1o /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = (/) ) \/ ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 1o /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 2o ) ) ) |
17 |
6 16
|
syl |
|- ( -. |^| { x e. On | ( A ` x ) =/= ( B ` x ) } e. dom A -> -. ( ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 1o /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = (/) ) \/ ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 1o /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 2o ) ) ) |
18 |
17
|
adantl |
|- ( ( ( A e. No /\ B e. No ) /\ -. |^| { x e. On | ( A ` x ) =/= ( B ` x ) } e. dom A ) -> -. ( ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 1o /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = (/) ) \/ ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 1o /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 2o ) ) ) |
19 |
|
orel1 |
|- ( -. ( ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 1o /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = (/) ) \/ ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 1o /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 2o ) ) -> ( ( ( ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 1o /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = (/) ) \/ ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 1o /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 2o ) ) \/ ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = (/) /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 2o ) ) -> ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = (/) /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 2o ) ) ) |
20 |
18 19
|
syl |
|- ( ( ( A e. No /\ B e. No ) /\ -. |^| { x e. On | ( A ` x ) =/= ( B ` x ) } e. dom A ) -> ( ( ( ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 1o /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = (/) ) \/ ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 1o /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 2o ) ) \/ ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = (/) /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 2o ) ) -> ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = (/) /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 2o ) ) ) |
21 |
5 20
|
syl5bi |
|- ( ( ( A e. No /\ B e. No ) /\ -. |^| { x e. On | ( A ` x ) =/= ( B ` x ) } e. dom A ) -> ( ( ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 1o /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = (/) ) \/ ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 1o /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 2o ) \/ ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = (/) /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 2o ) ) -> ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = (/) /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 2o ) ) ) |
22 |
|
ndmfv |
|- ( -. |^| { x e. On | ( A ` x ) =/= ( B ` x ) } e. dom B -> ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = (/) ) |
23 |
|
2on |
|- 2o e. On |
24 |
23
|
elexi |
|- 2o e. _V |
25 |
24
|
prid2 |
|- 2o e. { 1o , 2o } |
26 |
25
|
nosgnn0i |
|- (/) =/= 2o |
27 |
|
neeq1 |
|- ( ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = (/) -> ( ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) =/= 2o <-> (/) =/= 2o ) ) |
28 |
26 27
|
mpbiri |
|- ( ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = (/) -> ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) =/= 2o ) |
29 |
22 28
|
syl |
|- ( -. |^| { x e. On | ( A ` x ) =/= ( B ` x ) } e. dom B -> ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) =/= 2o ) |
30 |
29
|
neneqd |
|- ( -. |^| { x e. On | ( A ` x ) =/= ( B ` x ) } e. dom B -> -. ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 2o ) |
31 |
30
|
con4i |
|- ( ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 2o -> |^| { x e. On | ( A ` x ) =/= ( B ` x ) } e. dom B ) |
32 |
31
|
adantl |
|- ( ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = (/) /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 2o ) -> |^| { x e. On | ( A ` x ) =/= ( B ` x ) } e. dom B ) |
33 |
21 32
|
syl6 |
|- ( ( ( A e. No /\ B e. No ) /\ -. |^| { x e. On | ( A ` x ) =/= ( B ` x ) } e. dom A ) -> ( ( ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 1o /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = (/) ) \/ ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 1o /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 2o ) \/ ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = (/) /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 2o ) ) -> |^| { x e. On | ( A ` x ) =/= ( B ` x ) } e. dom B ) ) |
34 |
33
|
ex |
|- ( ( A e. No /\ B e. No ) -> ( -. |^| { x e. On | ( A ` x ) =/= ( B ` x ) } e. dom A -> ( ( ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 1o /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = (/) ) \/ ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 1o /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 2o ) \/ ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = (/) /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 2o ) ) -> |^| { x e. On | ( A ` x ) =/= ( B ` x ) } e. dom B ) ) ) |
35 |
34
|
com23 |
|- ( ( A e. No /\ B e. No ) -> ( ( ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 1o /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = (/) ) \/ ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 1o /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 2o ) \/ ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = (/) /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 2o ) ) -> ( -. |^| { x e. On | ( A ` x ) =/= ( B ` x ) } e. dom A -> |^| { x e. On | ( A ` x ) =/= ( B ` x ) } e. dom B ) ) ) |
36 |
4 35
|
syl5bi |
|- ( ( A e. No /\ B e. No ) -> ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) -> ( -. |^| { x e. On | ( A ` x ) =/= ( B ` x ) } e. dom A -> |^| { x e. On | ( A ` x ) =/= ( B ` x ) } e. dom B ) ) ) |
37 |
1 36
|
sylbid |
|- ( ( A e. No /\ B e. No ) -> ( A ( -. |^| { x e. On | ( A ` x ) =/= ( B ` x ) } e. dom A -> |^| { x e. On | ( A ` x ) =/= ( B ` x ) } e. dom B ) ) ) |
38 |
37
|
3impia |
|- ( ( A e. No /\ B e. No /\ A ( -. |^| { x e. On | ( A ` x ) =/= ( B ` x ) } e. dom A -> |^| { x e. On | ( A ` x ) =/= ( B ` x ) } e. dom B ) ) |
39 |
38
|
orrd |
|- ( ( A e. No /\ B e. No /\ A ( |^| { x e. On | ( A ` x ) =/= ( B ` x ) } e. dom A \/ |^| { x e. On | ( A ` x ) =/= ( B ` x ) } e. dom B ) ) |
40 |
|
elun |
|- ( |^| { x e. On | ( A ` x ) =/= ( B ` x ) } e. ( dom A u. dom B ) <-> ( |^| { x e. On | ( A ` x ) =/= ( B ` x ) } e. dom A \/ |^| { x e. On | ( A ` x ) =/= ( B ` x ) } e. dom B ) ) |
41 |
39 40
|
sylibr |
|- ( ( A e. No /\ B e. No /\ A |^| { x e. On | ( A ` x ) =/= ( B ` x ) } e. ( dom A u. dom B ) ) |