Step |
Hyp |
Ref |
Expression |
1 |
|
nosupbnd2.1 |
⊢ 𝑆 = if ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 , ( ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { 〈 dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) , 2o 〉 } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) ) |
2 |
|
nfv |
⊢ Ⅎ 𝑥 ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) |
3 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑍 |
4 |
|
nfre1 |
⊢ Ⅎ 𝑥 ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 |
5 |
|
nfriota1 |
⊢ Ⅎ 𝑥 ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) |
6 |
5
|
nfdm |
⊢ Ⅎ 𝑥 dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) |
7 |
|
nfcv |
⊢ Ⅎ 𝑥 2o |
8 |
6 7
|
nfop |
⊢ Ⅎ 𝑥 〈 dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) , 2o 〉 |
9 |
8
|
nfsn |
⊢ Ⅎ 𝑥 { 〈 dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) , 2o 〉 } |
10 |
5 9
|
nfun |
⊢ Ⅎ 𝑥 ( ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { 〈 dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) , 2o 〉 } ) |
11 |
|
nfcv |
⊢ Ⅎ 𝑥 { 𝑦 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } |
12 |
|
nfiota1 |
⊢ Ⅎ 𝑥 ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) |
13 |
11 12
|
nfmpt |
⊢ Ⅎ 𝑥 ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) |
14 |
4 10 13
|
nfif |
⊢ Ⅎ 𝑥 if ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 , ( ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { 〈 dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) , 2o 〉 } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) ) |
15 |
1 14
|
nfcxfr |
⊢ Ⅎ 𝑥 𝑆 |
16 |
15
|
nfdm |
⊢ Ⅎ 𝑥 dom 𝑆 |
17 |
3 16
|
nfres |
⊢ Ⅎ 𝑥 ( 𝑍 ↾ dom 𝑆 ) |
18 |
|
nfcv |
⊢ Ⅎ 𝑥 <s |
19 |
17 18 15
|
nfbr |
⊢ Ⅎ 𝑥 ( 𝑍 ↾ dom 𝑆 ) <s 𝑆 |
20 |
19
|
nfn |
⊢ Ⅎ 𝑥 ¬ ( 𝑍 ↾ dom 𝑆 ) <s 𝑆 |
21 |
2 20
|
nfim |
⊢ Ⅎ 𝑥 ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) → ¬ ( 𝑍 ↾ dom 𝑆 ) <s 𝑆 ) |
22 |
|
simpl |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ) → ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ) |
23 |
|
rspe |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) |
24 |
23
|
adantr |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) |
25 |
|
nomaxmo |
⊢ ( 𝐴 ⊆ No → ∃* 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) |
26 |
25
|
3ad2ant1 |
⊢ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) → ∃* 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) |
27 |
26
|
ad2antrl |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ) → ∃* 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) |
28 |
|
reu5 |
⊢ ( ∃! 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ↔ ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ∃* 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ) |
29 |
24 27 28
|
sylanbrc |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ) → ∃! 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) |
30 |
|
riota1 |
⊢ ( ∃! 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → ( ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ↔ ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) = 𝑥 ) ) |
31 |
29 30
|
syl |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ) → ( ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ↔ ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) = 𝑥 ) ) |
32 |
22 31
|
mpbid |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ) → ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) = 𝑥 ) |
33 |
|
nosupbnd2lem1 |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) → ¬ ( 𝑍 ↾ suc dom 𝑥 ) <s ( 𝑥 ∪ { 〈 dom 𝑥 , 2o 〉 } ) ) |
34 |
33
|
3expb |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ) → ¬ ( 𝑍 ↾ suc dom 𝑥 ) <s ( 𝑥 ∪ { 〈 dom 𝑥 , 2o 〉 } ) ) |
35 |
|
dmeq |
⊢ ( ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) = 𝑥 → dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) = dom 𝑥 ) |
36 |
|
suceq |
⊢ ( dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) = dom 𝑥 → suc dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) = suc dom 𝑥 ) |
37 |
35 36
|
syl |
⊢ ( ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) = 𝑥 → suc dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) = suc dom 𝑥 ) |
38 |
37
|
reseq2d |
⊢ ( ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) = 𝑥 → ( 𝑍 ↾ suc dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ) = ( 𝑍 ↾ suc dom 𝑥 ) ) |
39 |
|
id |
⊢ ( ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) = 𝑥 → ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) = 𝑥 ) |
40 |
35
|
opeq1d |
⊢ ( ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) = 𝑥 → 〈 dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) , 2o 〉 = 〈 dom 𝑥 , 2o 〉 ) |
41 |
40
|
sneqd |
⊢ ( ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) = 𝑥 → { 〈 dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) , 2o 〉 } = { 〈 dom 𝑥 , 2o 〉 } ) |
42 |
39 41
|
uneq12d |
⊢ ( ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) = 𝑥 → ( ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { 〈 dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) , 2o 〉 } ) = ( 𝑥 ∪ { 〈 dom 𝑥 , 2o 〉 } ) ) |
43 |
38 42
|
breq12d |
⊢ ( ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) = 𝑥 → ( ( 𝑍 ↾ suc dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ) <s ( ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { 〈 dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) , 2o 〉 } ) ↔ ( 𝑍 ↾ suc dom 𝑥 ) <s ( 𝑥 ∪ { 〈 dom 𝑥 , 2o 〉 } ) ) ) |
44 |
43
|
notbid |
⊢ ( ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) = 𝑥 → ( ¬ ( 𝑍 ↾ suc dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ) <s ( ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { 〈 dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) , 2o 〉 } ) ↔ ¬ ( 𝑍 ↾ suc dom 𝑥 ) <s ( 𝑥 ∪ { 〈 dom 𝑥 , 2o 〉 } ) ) ) |
45 |
34 44
|
syl5ibrcom |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ) → ( ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) = 𝑥 → ¬ ( 𝑍 ↾ suc dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ) <s ( ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { 〈 dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) , 2o 〉 } ) ) ) |
46 |
32 45
|
mpd |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ) → ¬ ( 𝑍 ↾ suc dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ) <s ( ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { 〈 dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) , 2o 〉 } ) ) |
47 |
|
iftrue |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → if ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 , ( ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { 〈 dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) , 2o 〉 } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) ) = ( ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { 〈 dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) , 2o 〉 } ) ) |
48 |
1 47
|
eqtrid |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → 𝑆 = ( ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { 〈 dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) , 2o 〉 } ) ) |
49 |
23 48
|
syl |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) → 𝑆 = ( ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { 〈 dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) , 2o 〉 } ) ) |
50 |
49
|
dmeqd |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) → dom 𝑆 = dom ( ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { 〈 dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) , 2o 〉 } ) ) |
51 |
|
2on |
⊢ 2o ∈ On |
52 |
51
|
elexi |
⊢ 2o ∈ V |
53 |
52
|
dmsnop |
⊢ dom { 〈 dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) , 2o 〉 } = { dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) } |
54 |
53
|
uneq2i |
⊢ ( dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ∪ dom { 〈 dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) , 2o 〉 } ) = ( dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) } ) |
55 |
|
dmun |
⊢ dom ( ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { 〈 dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) , 2o 〉 } ) = ( dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ∪ dom { 〈 dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) , 2o 〉 } ) |
56 |
|
df-suc |
⊢ suc dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) = ( dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) } ) |
57 |
54 55 56
|
3eqtr4i |
⊢ dom ( ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { 〈 dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) , 2o 〉 } ) = suc dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) |
58 |
50 57
|
eqtrdi |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) → dom 𝑆 = suc dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ) |
59 |
58
|
reseq2d |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) → ( 𝑍 ↾ dom 𝑆 ) = ( 𝑍 ↾ suc dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ) ) |
60 |
59
|
adantr |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ) → ( 𝑍 ↾ dom 𝑆 ) = ( 𝑍 ↾ suc dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ) ) |
61 |
49
|
adantr |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ) → 𝑆 = ( ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { 〈 dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) , 2o 〉 } ) ) |
62 |
60 61
|
breq12d |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ) → ( ( 𝑍 ↾ dom 𝑆 ) <s 𝑆 ↔ ( 𝑍 ↾ suc dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ) <s ( ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { 〈 dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) , 2o 〉 } ) ) ) |
63 |
46 62
|
mtbird |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ) → ¬ ( 𝑍 ↾ dom 𝑆 ) <s 𝑆 ) |
64 |
63
|
exp31 |
⊢ ( 𝑥 ∈ 𝐴 → ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) → ¬ ( 𝑍 ↾ dom 𝑆 ) <s 𝑆 ) ) ) |
65 |
21 64
|
rexlimi |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) → ¬ ( 𝑍 ↾ dom 𝑆 ) <s 𝑆 ) ) |
66 |
65
|
imp |
⊢ ( ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ) → ¬ ( 𝑍 ↾ dom 𝑆 ) <s 𝑆 ) |
67 |
1
|
nosupno |
⊢ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) → 𝑆 ∈ No ) |
68 |
67
|
3adant3 |
⊢ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) → 𝑆 ∈ No ) |
69 |
68
|
ad2antrl |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ) → 𝑆 ∈ No ) |
70 |
|
nodmon |
⊢ ( 𝑆 ∈ No → dom 𝑆 ∈ On ) |
71 |
69 70
|
syl |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ) → dom 𝑆 ∈ On ) |
72 |
|
noreson |
⊢ ( ( 𝑆 ∈ No ∧ dom 𝑆 ∈ On ) → ( 𝑆 ↾ dom 𝑆 ) ∈ No ) |
73 |
69 71 72
|
syl2anc |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ) → ( 𝑆 ↾ dom 𝑆 ) ∈ No ) |
74 |
|
simprl3 |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ) → 𝑍 ∈ No ) |
75 |
|
noreson |
⊢ ( ( 𝑍 ∈ No ∧ dom 𝑆 ∈ On ) → ( 𝑍 ↾ dom 𝑆 ) ∈ No ) |
76 |
74 71 75
|
syl2anc |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ) → ( 𝑍 ↾ dom 𝑆 ) ∈ No ) |
77 |
|
dmres |
⊢ dom ( 𝑆 ↾ dom 𝑆 ) = ( dom 𝑆 ∩ dom 𝑆 ) |
78 |
|
inss2 |
⊢ ( dom 𝑆 ∩ dom 𝑆 ) ⊆ dom 𝑆 |
79 |
77 78
|
eqsstri |
⊢ dom ( 𝑆 ↾ dom 𝑆 ) ⊆ dom 𝑆 |
80 |
79
|
a1i |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ) → dom ( 𝑆 ↾ dom 𝑆 ) ⊆ dom 𝑆 ) |
81 |
|
dmres |
⊢ dom ( 𝑍 ↾ dom 𝑆 ) = ( dom 𝑆 ∩ dom 𝑍 ) |
82 |
|
inss1 |
⊢ ( dom 𝑆 ∩ dom 𝑍 ) ⊆ dom 𝑆 |
83 |
81 82
|
eqsstri |
⊢ dom ( 𝑍 ↾ dom 𝑆 ) ⊆ dom 𝑆 |
84 |
83
|
a1i |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ) → dom ( 𝑍 ↾ dom 𝑆 ) ⊆ dom 𝑆 ) |
85 |
1
|
nosupdm |
⊢ ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → dom 𝑆 = { 𝑔 ∣ ∃ 𝑝 ∈ 𝐴 ( 𝑔 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐴 ( ¬ 𝑞 <s 𝑝 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) } ) |
86 |
85
|
abeq2d |
⊢ ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → ( 𝑔 ∈ dom 𝑆 ↔ ∃ 𝑝 ∈ 𝐴 ( 𝑔 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐴 ( ¬ 𝑞 <s 𝑝 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) ) ) |
87 |
86
|
adantr |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ) → ( 𝑔 ∈ dom 𝑆 ↔ ∃ 𝑝 ∈ 𝐴 ( 𝑔 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐴 ( ¬ 𝑞 <s 𝑝 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) ) ) |
88 |
|
simprl |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ) ∧ ( 𝑝 ∈ 𝐴 ∧ ( 𝑔 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐴 ( ¬ 𝑞 <s 𝑝 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) ) ) → 𝑝 ∈ 𝐴 ) |
89 |
|
simplrr |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ) ∧ ( 𝑝 ∈ 𝐴 ∧ ( 𝑔 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐴 ( ¬ 𝑞 <s 𝑝 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) ) ) → ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) |
90 |
|
breq1 |
⊢ ( 𝑎 = 𝑝 → ( 𝑎 <s 𝑍 ↔ 𝑝 <s 𝑍 ) ) |
91 |
90
|
rspcv |
⊢ ( 𝑝 ∈ 𝐴 → ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 → 𝑝 <s 𝑍 ) ) |
92 |
88 89 91
|
sylc |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ) ∧ ( 𝑝 ∈ 𝐴 ∧ ( 𝑔 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐴 ( ¬ 𝑞 <s 𝑝 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) ) ) → 𝑝 <s 𝑍 ) |
93 |
|
simprl1 |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ) → 𝐴 ⊆ No ) |
94 |
93
|
adantr |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ) ∧ ( 𝑝 ∈ 𝐴 ∧ ( 𝑔 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐴 ( ¬ 𝑞 <s 𝑝 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) ) ) → 𝐴 ⊆ No ) |
95 |
94 88
|
sseldd |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ) ∧ ( 𝑝 ∈ 𝐴 ∧ ( 𝑔 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐴 ( ¬ 𝑞 <s 𝑝 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) ) ) → 𝑝 ∈ No ) |
96 |
74
|
adantr |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ) ∧ ( 𝑝 ∈ 𝐴 ∧ ( 𝑔 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐴 ( ¬ 𝑞 <s 𝑝 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) ) ) → 𝑍 ∈ No ) |
97 |
|
sltso |
⊢ <s Or No |
98 |
|
soasym |
⊢ ( ( <s Or No ∧ ( 𝑝 ∈ No ∧ 𝑍 ∈ No ) ) → ( 𝑝 <s 𝑍 → ¬ 𝑍 <s 𝑝 ) ) |
99 |
97 98
|
mpan |
⊢ ( ( 𝑝 ∈ No ∧ 𝑍 ∈ No ) → ( 𝑝 <s 𝑍 → ¬ 𝑍 <s 𝑝 ) ) |
100 |
95 96 99
|
syl2anc |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ) ∧ ( 𝑝 ∈ 𝐴 ∧ ( 𝑔 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐴 ( ¬ 𝑞 <s 𝑝 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) ) ) → ( 𝑝 <s 𝑍 → ¬ 𝑍 <s 𝑝 ) ) |
101 |
92 100
|
mpd |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ) ∧ ( 𝑝 ∈ 𝐴 ∧ ( 𝑔 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐴 ( ¬ 𝑞 <s 𝑝 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) ) ) → ¬ 𝑍 <s 𝑝 ) |
102 |
|
nodmon |
⊢ ( 𝑝 ∈ No → dom 𝑝 ∈ On ) |
103 |
95 102
|
syl |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ) ∧ ( 𝑝 ∈ 𝐴 ∧ ( 𝑔 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐴 ( ¬ 𝑞 <s 𝑝 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) ) ) → dom 𝑝 ∈ On ) |
104 |
|
simprrl |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ) ∧ ( 𝑝 ∈ 𝐴 ∧ ( 𝑔 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐴 ( ¬ 𝑞 <s 𝑝 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) ) ) → 𝑔 ∈ dom 𝑝 ) |
105 |
|
onelon |
⊢ ( ( dom 𝑝 ∈ On ∧ 𝑔 ∈ dom 𝑝 ) → 𝑔 ∈ On ) |
106 |
103 104 105
|
syl2anc |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ) ∧ ( 𝑝 ∈ 𝐴 ∧ ( 𝑔 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐴 ( ¬ 𝑞 <s 𝑝 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) ) ) → 𝑔 ∈ On ) |
107 |
|
sucelon |
⊢ ( 𝑔 ∈ On ↔ suc 𝑔 ∈ On ) |
108 |
106 107
|
sylib |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ) ∧ ( 𝑝 ∈ 𝐴 ∧ ( 𝑔 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐴 ( ¬ 𝑞 <s 𝑝 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) ) ) → suc 𝑔 ∈ On ) |
109 |
|
sltres |
⊢ ( ( 𝑍 ∈ No ∧ 𝑝 ∈ No ∧ suc 𝑔 ∈ On ) → ( ( 𝑍 ↾ suc 𝑔 ) <s ( 𝑝 ↾ suc 𝑔 ) → 𝑍 <s 𝑝 ) ) |
110 |
96 95 108 109
|
syl3anc |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ) ∧ ( 𝑝 ∈ 𝐴 ∧ ( 𝑔 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐴 ( ¬ 𝑞 <s 𝑝 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) ) ) → ( ( 𝑍 ↾ suc 𝑔 ) <s ( 𝑝 ↾ suc 𝑔 ) → 𝑍 <s 𝑝 ) ) |
111 |
101 110
|
mtod |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ) ∧ ( 𝑝 ∈ 𝐴 ∧ ( 𝑔 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐴 ( ¬ 𝑞 <s 𝑝 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) ) ) → ¬ ( 𝑍 ↾ suc 𝑔 ) <s ( 𝑝 ↾ suc 𝑔 ) ) |
112 |
|
simpll |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ) ∧ ( 𝑝 ∈ 𝐴 ∧ ( 𝑔 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐴 ( ¬ 𝑞 <s 𝑝 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) ) ) → ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) |
113 |
|
simprl2 |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ) → 𝐴 ∈ V ) |
114 |
93 113
|
jca |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ) → ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ) |
115 |
114
|
adantr |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ) ∧ ( 𝑝 ∈ 𝐴 ∧ ( 𝑔 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐴 ( ¬ 𝑞 <s 𝑝 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) ) ) → ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ) |
116 |
|
simprrr |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ) ∧ ( 𝑝 ∈ 𝐴 ∧ ( 𝑔 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐴 ( ¬ 𝑞 <s 𝑝 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) ) ) → ∀ 𝑞 ∈ 𝐴 ( ¬ 𝑞 <s 𝑝 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) |
117 |
|
breq1 |
⊢ ( 𝑣 = 𝑞 → ( 𝑣 <s 𝑝 ↔ 𝑞 <s 𝑝 ) ) |
118 |
117
|
notbid |
⊢ ( 𝑣 = 𝑞 → ( ¬ 𝑣 <s 𝑝 ↔ ¬ 𝑞 <s 𝑝 ) ) |
119 |
|
reseq1 |
⊢ ( 𝑣 = 𝑞 → ( 𝑣 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) |
120 |
119
|
eqeq2d |
⊢ ( 𝑣 = 𝑞 → ( ( 𝑝 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ↔ ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) |
121 |
118 120
|
imbi12d |
⊢ ( 𝑣 = 𝑞 → ( ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ↔ ( ¬ 𝑞 <s 𝑝 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) ) |
122 |
121
|
cbvralvw |
⊢ ( ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ↔ ∀ 𝑞 ∈ 𝐴 ( ¬ 𝑞 <s 𝑝 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) |
123 |
116 122
|
sylibr |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ) ∧ ( 𝑝 ∈ 𝐴 ∧ ( 𝑔 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐴 ( ¬ 𝑞 <s 𝑝 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) ) ) → ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ) |
124 |
1
|
nosupres |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑔 ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ) ) → ( 𝑆 ↾ suc 𝑔 ) = ( 𝑝 ↾ suc 𝑔 ) ) |
125 |
112 115 88 104 123 124
|
syl113anc |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ) ∧ ( 𝑝 ∈ 𝐴 ∧ ( 𝑔 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐴 ( ¬ 𝑞 <s 𝑝 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) ) ) → ( 𝑆 ↾ suc 𝑔 ) = ( 𝑝 ↾ suc 𝑔 ) ) |
126 |
125
|
breq2d |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ) ∧ ( 𝑝 ∈ 𝐴 ∧ ( 𝑔 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐴 ( ¬ 𝑞 <s 𝑝 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) ) ) → ( ( 𝑍 ↾ suc 𝑔 ) <s ( 𝑆 ↾ suc 𝑔 ) ↔ ( 𝑍 ↾ suc 𝑔 ) <s ( 𝑝 ↾ suc 𝑔 ) ) ) |
127 |
111 126
|
mtbird |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ) ∧ ( 𝑝 ∈ 𝐴 ∧ ( 𝑔 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐴 ( ¬ 𝑞 <s 𝑝 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) ) ) → ¬ ( 𝑍 ↾ suc 𝑔 ) <s ( 𝑆 ↾ suc 𝑔 ) ) |
128 |
127
|
rexlimdvaa |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ) → ( ∃ 𝑝 ∈ 𝐴 ( 𝑔 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐴 ( ¬ 𝑞 <s 𝑝 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) → ¬ ( 𝑍 ↾ suc 𝑔 ) <s ( 𝑆 ↾ suc 𝑔 ) ) ) |
129 |
87 128
|
sylbid |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ) → ( 𝑔 ∈ dom 𝑆 → ¬ ( 𝑍 ↾ suc 𝑔 ) <s ( 𝑆 ↾ suc 𝑔 ) ) ) |
130 |
129
|
imp |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ) ∧ 𝑔 ∈ dom 𝑆 ) → ¬ ( 𝑍 ↾ suc 𝑔 ) <s ( 𝑆 ↾ suc 𝑔 ) ) |
131 |
69
|
adantr |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ) ∧ 𝑔 ∈ dom 𝑆 ) → 𝑆 ∈ No ) |
132 |
|
nodmord |
⊢ ( 𝑆 ∈ No → Ord dom 𝑆 ) |
133 |
131 132
|
syl |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ) ∧ 𝑔 ∈ dom 𝑆 ) → Ord dom 𝑆 ) |
134 |
|
simpr |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ) ∧ 𝑔 ∈ dom 𝑆 ) → 𝑔 ∈ dom 𝑆 ) |
135 |
|
ordsucss |
⊢ ( Ord dom 𝑆 → ( 𝑔 ∈ dom 𝑆 → suc 𝑔 ⊆ dom 𝑆 ) ) |
136 |
133 134 135
|
sylc |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ) ∧ 𝑔 ∈ dom 𝑆 ) → suc 𝑔 ⊆ dom 𝑆 ) |
137 |
136
|
resabs1d |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ) ∧ 𝑔 ∈ dom 𝑆 ) → ( ( 𝑍 ↾ dom 𝑆 ) ↾ suc 𝑔 ) = ( 𝑍 ↾ suc 𝑔 ) ) |
138 |
136
|
resabs1d |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ) ∧ 𝑔 ∈ dom 𝑆 ) → ( ( 𝑆 ↾ dom 𝑆 ) ↾ suc 𝑔 ) = ( 𝑆 ↾ suc 𝑔 ) ) |
139 |
137 138
|
breq12d |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ) ∧ 𝑔 ∈ dom 𝑆 ) → ( ( ( 𝑍 ↾ dom 𝑆 ) ↾ suc 𝑔 ) <s ( ( 𝑆 ↾ dom 𝑆 ) ↾ suc 𝑔 ) ↔ ( 𝑍 ↾ suc 𝑔 ) <s ( 𝑆 ↾ suc 𝑔 ) ) ) |
140 |
130 139
|
mtbird |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ) ∧ 𝑔 ∈ dom 𝑆 ) → ¬ ( ( 𝑍 ↾ dom 𝑆 ) ↾ suc 𝑔 ) <s ( ( 𝑆 ↾ dom 𝑆 ) ↾ suc 𝑔 ) ) |
141 |
140
|
ralrimiva |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ) → ∀ 𝑔 ∈ dom 𝑆 ¬ ( ( 𝑍 ↾ dom 𝑆 ) ↾ suc 𝑔 ) <s ( ( 𝑆 ↾ dom 𝑆 ) ↾ suc 𝑔 ) ) |
142 |
|
noresle |
⊢ ( ( ( ( 𝑆 ↾ dom 𝑆 ) ∈ No ∧ ( 𝑍 ↾ dom 𝑆 ) ∈ No ) ∧ ( dom ( 𝑆 ↾ dom 𝑆 ) ⊆ dom 𝑆 ∧ dom ( 𝑍 ↾ dom 𝑆 ) ⊆ dom 𝑆 ∧ ∀ 𝑔 ∈ dom 𝑆 ¬ ( ( 𝑍 ↾ dom 𝑆 ) ↾ suc 𝑔 ) <s ( ( 𝑆 ↾ dom 𝑆 ) ↾ suc 𝑔 ) ) ) → ¬ ( 𝑍 ↾ dom 𝑆 ) <s ( 𝑆 ↾ dom 𝑆 ) ) |
143 |
73 76 80 84 141 142
|
syl23anc |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ) → ¬ ( 𝑍 ↾ dom 𝑆 ) <s ( 𝑆 ↾ dom 𝑆 ) ) |
144 |
|
nofun |
⊢ ( 𝑆 ∈ No → Fun 𝑆 ) |
145 |
69 144
|
syl |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ) → Fun 𝑆 ) |
146 |
|
funrel |
⊢ ( Fun 𝑆 → Rel 𝑆 ) |
147 |
|
resdm |
⊢ ( Rel 𝑆 → ( 𝑆 ↾ dom 𝑆 ) = 𝑆 ) |
148 |
145 146 147
|
3syl |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ) → ( 𝑆 ↾ dom 𝑆 ) = 𝑆 ) |
149 |
148
|
breq2d |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ) → ( ( 𝑍 ↾ dom 𝑆 ) <s ( 𝑆 ↾ dom 𝑆 ) ↔ ( 𝑍 ↾ dom 𝑆 ) <s 𝑆 ) ) |
150 |
143 149
|
mtbid |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ) → ¬ ( 𝑍 ↾ dom 𝑆 ) <s 𝑆 ) |
151 |
66 150
|
pm2.61ian |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) → ¬ ( 𝑍 ↾ dom 𝑆 ) <s 𝑆 ) |
152 |
|
simpll1 |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ¬ ( 𝑍 ↾ dom 𝑆 ) <s 𝑆 ) ∧ 𝑎 ∈ 𝐴 ) → 𝐴 ⊆ No ) |
153 |
|
simpll2 |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ¬ ( 𝑍 ↾ dom 𝑆 ) <s 𝑆 ) ∧ 𝑎 ∈ 𝐴 ) → 𝐴 ∈ V ) |
154 |
|
simpr |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ¬ ( 𝑍 ↾ dom 𝑆 ) <s 𝑆 ) ∧ 𝑎 ∈ 𝐴 ) → 𝑎 ∈ 𝐴 ) |
155 |
1
|
nosupbnd1 |
⊢ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑎 ∈ 𝐴 ) → ( 𝑎 ↾ dom 𝑆 ) <s 𝑆 ) |
156 |
152 153 154 155
|
syl3anc |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ¬ ( 𝑍 ↾ dom 𝑆 ) <s 𝑆 ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝑎 ↾ dom 𝑆 ) <s 𝑆 ) |
157 |
|
simplr |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ¬ ( 𝑍 ↾ dom 𝑆 ) <s 𝑆 ) ∧ 𝑎 ∈ 𝐴 ) → ¬ ( 𝑍 ↾ dom 𝑆 ) <s 𝑆 ) |
158 |
|
simpl1 |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ¬ ( 𝑍 ↾ dom 𝑆 ) <s 𝑆 ) → 𝐴 ⊆ No ) |
159 |
158
|
sselda |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ¬ ( 𝑍 ↾ dom 𝑆 ) <s 𝑆 ) ∧ 𝑎 ∈ 𝐴 ) → 𝑎 ∈ No ) |
160 |
152 153 67
|
syl2anc |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ¬ ( 𝑍 ↾ dom 𝑆 ) <s 𝑆 ) ∧ 𝑎 ∈ 𝐴 ) → 𝑆 ∈ No ) |
161 |
160 70
|
syl |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ¬ ( 𝑍 ↾ dom 𝑆 ) <s 𝑆 ) ∧ 𝑎 ∈ 𝐴 ) → dom 𝑆 ∈ On ) |
162 |
|
noreson |
⊢ ( ( 𝑎 ∈ No ∧ dom 𝑆 ∈ On ) → ( 𝑎 ↾ dom 𝑆 ) ∈ No ) |
163 |
159 161 162
|
syl2anc |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ¬ ( 𝑍 ↾ dom 𝑆 ) <s 𝑆 ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝑎 ↾ dom 𝑆 ) ∈ No ) |
164 |
|
simpll3 |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ¬ ( 𝑍 ↾ dom 𝑆 ) <s 𝑆 ) ∧ 𝑎 ∈ 𝐴 ) → 𝑍 ∈ No ) |
165 |
164 161 75
|
syl2anc |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ¬ ( 𝑍 ↾ dom 𝑆 ) <s 𝑆 ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝑍 ↾ dom 𝑆 ) ∈ No ) |
166 |
|
sotr3 |
⊢ ( ( <s Or No ∧ ( ( 𝑎 ↾ dom 𝑆 ) ∈ No ∧ 𝑆 ∈ No ∧ ( 𝑍 ↾ dom 𝑆 ) ∈ No ) ) → ( ( ( 𝑎 ↾ dom 𝑆 ) <s 𝑆 ∧ ¬ ( 𝑍 ↾ dom 𝑆 ) <s 𝑆 ) → ( 𝑎 ↾ dom 𝑆 ) <s ( 𝑍 ↾ dom 𝑆 ) ) ) |
167 |
97 166
|
mpan |
⊢ ( ( ( 𝑎 ↾ dom 𝑆 ) ∈ No ∧ 𝑆 ∈ No ∧ ( 𝑍 ↾ dom 𝑆 ) ∈ No ) → ( ( ( 𝑎 ↾ dom 𝑆 ) <s 𝑆 ∧ ¬ ( 𝑍 ↾ dom 𝑆 ) <s 𝑆 ) → ( 𝑎 ↾ dom 𝑆 ) <s ( 𝑍 ↾ dom 𝑆 ) ) ) |
168 |
163 160 165 167
|
syl3anc |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ¬ ( 𝑍 ↾ dom 𝑆 ) <s 𝑆 ) ∧ 𝑎 ∈ 𝐴 ) → ( ( ( 𝑎 ↾ dom 𝑆 ) <s 𝑆 ∧ ¬ ( 𝑍 ↾ dom 𝑆 ) <s 𝑆 ) → ( 𝑎 ↾ dom 𝑆 ) <s ( 𝑍 ↾ dom 𝑆 ) ) ) |
169 |
156 157 168
|
mp2and |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ¬ ( 𝑍 ↾ dom 𝑆 ) <s 𝑆 ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝑎 ↾ dom 𝑆 ) <s ( 𝑍 ↾ dom 𝑆 ) ) |
170 |
|
sltres |
⊢ ( ( 𝑎 ∈ No ∧ 𝑍 ∈ No ∧ dom 𝑆 ∈ On ) → ( ( 𝑎 ↾ dom 𝑆 ) <s ( 𝑍 ↾ dom 𝑆 ) → 𝑎 <s 𝑍 ) ) |
171 |
159 164 161 170
|
syl3anc |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ¬ ( 𝑍 ↾ dom 𝑆 ) <s 𝑆 ) ∧ 𝑎 ∈ 𝐴 ) → ( ( 𝑎 ↾ dom 𝑆 ) <s ( 𝑍 ↾ dom 𝑆 ) → 𝑎 <s 𝑍 ) ) |
172 |
169 171
|
mpd |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ¬ ( 𝑍 ↾ dom 𝑆 ) <s 𝑆 ) ∧ 𝑎 ∈ 𝐴 ) → 𝑎 <s 𝑍 ) |
173 |
172
|
ralrimiva |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ¬ ( 𝑍 ↾ dom 𝑆 ) <s 𝑆 ) → ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) |
174 |
151 173
|
impbida |
⊢ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) → ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ↔ ¬ ( 𝑍 ↾ dom 𝑆 ) <s 𝑆 ) ) |