Metamath Proof Explorer
		
		
		
		Description:  Bound-variable hypothesis builder for domain.  (Contributed by NM, 30-Jan-2004)  (Revised by Mario Carneiro, 15-Oct-2016)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypothesis | nfrn.1 | ⊢ Ⅎ 𝑥 𝐴 | 
				
					|  | Assertion | nfdm | ⊢  Ⅎ 𝑥 dom  𝐴 | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nfrn.1 | ⊢ Ⅎ 𝑥 𝐴 | 
						
							| 2 |  | df-dm | ⊢ dom  𝐴  =  { 𝑦  ∣  ∃ 𝑧 𝑦 𝐴 𝑧 } | 
						
							| 3 |  | nfcv | ⊢ Ⅎ 𝑥 𝑦 | 
						
							| 4 |  | nfcv | ⊢ Ⅎ 𝑥 𝑧 | 
						
							| 5 | 3 1 4 | nfbr | ⊢ Ⅎ 𝑥 𝑦 𝐴 𝑧 | 
						
							| 6 | 5 | nfex | ⊢ Ⅎ 𝑥 ∃ 𝑧 𝑦 𝐴 𝑧 | 
						
							| 7 | 6 | nfab | ⊢ Ⅎ 𝑥 { 𝑦  ∣  ∃ 𝑧 𝑦 𝐴 𝑧 } | 
						
							| 8 | 2 7 | nfcxfr | ⊢ Ⅎ 𝑥 dom  𝐴 |