Step |
Hyp |
Ref |
Expression |
1 |
|
simp1l |
⊢ ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) → 𝑈 ∈ 𝐴 ) |
2 |
|
simp3 |
⊢ ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) → ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) |
3 |
|
breq1 |
⊢ ( 𝑎 = 𝑈 → ( 𝑎 <s 𝑍 ↔ 𝑈 <s 𝑍 ) ) |
4 |
3
|
rspcv |
⊢ ( 𝑈 ∈ 𝐴 → ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 → 𝑈 <s 𝑍 ) ) |
5 |
1 2 4
|
sylc |
⊢ ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) → 𝑈 <s 𝑍 ) |
6 |
|
simpl21 |
⊢ ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) → 𝐴 ⊆ No ) |
7 |
|
simpl1l |
⊢ ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) → 𝑈 ∈ 𝐴 ) |
8 |
6 7
|
sseldd |
⊢ ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) → 𝑈 ∈ No ) |
9 |
|
simpl23 |
⊢ ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) → 𝑍 ∈ No ) |
10 |
|
simp21 |
⊢ ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) → 𝐴 ⊆ No ) |
11 |
10 1
|
sseldd |
⊢ ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) → 𝑈 ∈ No ) |
12 |
|
sltso |
⊢ <s Or No |
13 |
|
sonr |
⊢ ( ( <s Or No ∧ 𝑈 ∈ No ) → ¬ 𝑈 <s 𝑈 ) |
14 |
12 13
|
mpan |
⊢ ( 𝑈 ∈ No → ¬ 𝑈 <s 𝑈 ) |
15 |
11 14
|
syl |
⊢ ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) → ¬ 𝑈 <s 𝑈 ) |
16 |
|
breq2 |
⊢ ( 𝑈 = 𝑍 → ( 𝑈 <s 𝑈 ↔ 𝑈 <s 𝑍 ) ) |
17 |
16
|
notbid |
⊢ ( 𝑈 = 𝑍 → ( ¬ 𝑈 <s 𝑈 ↔ ¬ 𝑈 <s 𝑍 ) ) |
18 |
15 17
|
syl5ibcom |
⊢ ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) → ( 𝑈 = 𝑍 → ¬ 𝑈 <s 𝑍 ) ) |
19 |
18
|
con2d |
⊢ ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) → ( 𝑈 <s 𝑍 → ¬ 𝑈 = 𝑍 ) ) |
20 |
19
|
imp |
⊢ ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) → ¬ 𝑈 = 𝑍 ) |
21 |
20
|
neqned |
⊢ ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) → 𝑈 ≠ 𝑍 ) |
22 |
|
nosepssdm |
⊢ ( ( 𝑈 ∈ No ∧ 𝑍 ∈ No ∧ 𝑈 ≠ 𝑍 ) → ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ⊆ dom 𝑈 ) |
23 |
8 9 21 22
|
syl3anc |
⊢ ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) → ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ⊆ dom 𝑈 ) |
24 |
|
nosepon |
⊢ ( ( 𝑈 ∈ No ∧ 𝑍 ∈ No ∧ 𝑈 ≠ 𝑍 ) → ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ On ) |
25 |
8 9 21 24
|
syl3anc |
⊢ ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) → ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ On ) |
26 |
|
nodmon |
⊢ ( 𝑈 ∈ No → dom 𝑈 ∈ On ) |
27 |
8 26
|
syl |
⊢ ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) → dom 𝑈 ∈ On ) |
28 |
|
onsseleq |
⊢ ( ( ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ On ∧ dom 𝑈 ∈ On ) → ( ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ⊆ dom 𝑈 ↔ ( ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ∨ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) ) ) |
29 |
25 27 28
|
syl2anc |
⊢ ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) → ( ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ⊆ dom 𝑈 ↔ ( ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ∨ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) ) ) |
30 |
8
|
adantr |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → 𝑈 ∈ No ) |
31 |
9
|
adantr |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → 𝑍 ∈ No ) |
32 |
21
|
adantr |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → 𝑈 ≠ 𝑍 ) |
33 |
30 31 32 24
|
syl3anc |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ On ) |
34 |
|
onelon |
⊢ ( ( ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ On ∧ 𝑞 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) → 𝑞 ∈ On ) |
35 |
33 34
|
sylan |
⊢ ( ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) ∧ 𝑞 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) → 𝑞 ∈ On ) |
36 |
|
simpr |
⊢ ( ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) ∧ 𝑞 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) → 𝑞 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) |
37 |
|
fveq2 |
⊢ ( 𝑥 = 𝑞 → ( 𝑈 ‘ 𝑥 ) = ( 𝑈 ‘ 𝑞 ) ) |
38 |
|
fveq2 |
⊢ ( 𝑥 = 𝑞 → ( 𝑍 ‘ 𝑥 ) = ( 𝑍 ‘ 𝑞 ) ) |
39 |
37 38
|
neeq12d |
⊢ ( 𝑥 = 𝑞 → ( ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) ↔ ( 𝑈 ‘ 𝑞 ) ≠ ( 𝑍 ‘ 𝑞 ) ) ) |
40 |
39
|
onnminsb |
⊢ ( 𝑞 ∈ On → ( 𝑞 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } → ¬ ( 𝑈 ‘ 𝑞 ) ≠ ( 𝑍 ‘ 𝑞 ) ) ) |
41 |
35 36 40
|
sylc |
⊢ ( ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) ∧ 𝑞 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) → ¬ ( 𝑈 ‘ 𝑞 ) ≠ ( 𝑍 ‘ 𝑞 ) ) |
42 |
|
df-ne |
⊢ ( ( 𝑈 ‘ 𝑞 ) ≠ ( 𝑍 ‘ 𝑞 ) ↔ ¬ ( 𝑈 ‘ 𝑞 ) = ( 𝑍 ‘ 𝑞 ) ) |
43 |
42
|
con2bii |
⊢ ( ( 𝑈 ‘ 𝑞 ) = ( 𝑍 ‘ 𝑞 ) ↔ ¬ ( 𝑈 ‘ 𝑞 ) ≠ ( 𝑍 ‘ 𝑞 ) ) |
44 |
41 43
|
sylibr |
⊢ ( ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) ∧ 𝑞 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) → ( 𝑈 ‘ 𝑞 ) = ( 𝑍 ‘ 𝑞 ) ) |
45 |
|
simplr |
⊢ ( ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) ∧ 𝑞 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) → ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) |
46 |
27
|
adantr |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → dom 𝑈 ∈ On ) |
47 |
46
|
adantr |
⊢ ( ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) ∧ 𝑞 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) → dom 𝑈 ∈ On ) |
48 |
|
ontr1 |
⊢ ( dom 𝑈 ∈ On → ( ( 𝑞 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → 𝑞 ∈ dom 𝑈 ) ) |
49 |
47 48
|
syl |
⊢ ( ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) ∧ 𝑞 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) → ( ( 𝑞 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → 𝑞 ∈ dom 𝑈 ) ) |
50 |
36 45 49
|
mp2and |
⊢ ( ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) ∧ 𝑞 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) → 𝑞 ∈ dom 𝑈 ) |
51 |
50
|
fvresd |
⊢ ( ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) ∧ 𝑞 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) → ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑞 ) = ( 𝑍 ‘ 𝑞 ) ) |
52 |
44 51
|
eqtr4d |
⊢ ( ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) ∧ 𝑞 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) → ( 𝑈 ‘ 𝑞 ) = ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑞 ) ) |
53 |
52
|
ralrimiva |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ∀ 𝑞 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ( 𝑈 ‘ 𝑞 ) = ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑞 ) ) |
54 |
|
simplr |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → 𝑈 <s 𝑍 ) |
55 |
|
sltval2 |
⊢ ( ( 𝑈 ∈ No ∧ 𝑍 ∈ No ) → ( 𝑈 <s 𝑍 ↔ ( 𝑈 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝑍 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) ) ) |
56 |
30 31 55
|
syl2anc |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ( 𝑈 <s 𝑍 ↔ ( 𝑈 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝑍 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) ) ) |
57 |
54 56
|
mpbid |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ( 𝑈 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝑍 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) ) |
58 |
|
simpr |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) |
59 |
58
|
fvresd |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ( ( 𝑍 ↾ dom 𝑈 ) ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) = ( 𝑍 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) ) |
60 |
57 59
|
breqtrrd |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ( 𝑈 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( ( 𝑍 ↾ dom 𝑈 ) ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) ) |
61 |
|
raleq |
⊢ ( 𝑝 = ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } → ( ∀ 𝑞 ∈ 𝑝 ( 𝑈 ‘ 𝑞 ) = ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑞 ) ↔ ∀ 𝑞 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ( 𝑈 ‘ 𝑞 ) = ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑞 ) ) ) |
62 |
|
fveq2 |
⊢ ( 𝑝 = ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } → ( 𝑈 ‘ 𝑝 ) = ( 𝑈 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) ) |
63 |
|
fveq2 |
⊢ ( 𝑝 = ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } → ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑝 ) = ( ( 𝑍 ↾ dom 𝑈 ) ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) ) |
64 |
62 63
|
breq12d |
⊢ ( 𝑝 = ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } → ( ( 𝑈 ‘ 𝑝 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑝 ) ↔ ( 𝑈 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( ( 𝑍 ↾ dom 𝑈 ) ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) ) ) |
65 |
61 64
|
anbi12d |
⊢ ( 𝑝 = ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } → ( ( ∀ 𝑞 ∈ 𝑝 ( 𝑈 ‘ 𝑞 ) = ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑞 ) ∧ ( 𝑈 ‘ 𝑝 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑝 ) ) ↔ ( ∀ 𝑞 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ( 𝑈 ‘ 𝑞 ) = ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑞 ) ∧ ( 𝑈 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( ( 𝑍 ↾ dom 𝑈 ) ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) ) ) ) |
66 |
65
|
rspcev |
⊢ ( ( ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ On ∧ ( ∀ 𝑞 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ( 𝑈 ‘ 𝑞 ) = ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑞 ) ∧ ( 𝑈 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( ( 𝑍 ↾ dom 𝑈 ) ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) ) ) → ∃ 𝑝 ∈ On ( ∀ 𝑞 ∈ 𝑝 ( 𝑈 ‘ 𝑞 ) = ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑞 ) ∧ ( 𝑈 ‘ 𝑝 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑝 ) ) ) |
67 |
33 53 60 66
|
syl12anc |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ∃ 𝑝 ∈ On ( ∀ 𝑞 ∈ 𝑝 ( 𝑈 ‘ 𝑞 ) = ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑞 ) ∧ ( 𝑈 ‘ 𝑝 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑝 ) ) ) |
68 |
|
noreson |
⊢ ( ( 𝑍 ∈ No ∧ dom 𝑈 ∈ On ) → ( 𝑍 ↾ dom 𝑈 ) ∈ No ) |
69 |
31 46 68
|
syl2anc |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ( 𝑍 ↾ dom 𝑈 ) ∈ No ) |
70 |
|
sltval |
⊢ ( ( 𝑈 ∈ No ∧ ( 𝑍 ↾ dom 𝑈 ) ∈ No ) → ( 𝑈 <s ( 𝑍 ↾ dom 𝑈 ) ↔ ∃ 𝑝 ∈ On ( ∀ 𝑞 ∈ 𝑝 ( 𝑈 ‘ 𝑞 ) = ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑞 ) ∧ ( 𝑈 ‘ 𝑝 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑝 ) ) ) ) |
71 |
30 69 70
|
syl2anc |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ( 𝑈 <s ( 𝑍 ↾ dom 𝑈 ) ↔ ∃ 𝑝 ∈ On ( ∀ 𝑞 ∈ 𝑝 ( 𝑈 ‘ 𝑞 ) = ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑞 ) ∧ ( 𝑈 ‘ 𝑝 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑝 ) ) ) ) |
72 |
67 71
|
mpbird |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → 𝑈 <s ( 𝑍 ↾ dom 𝑈 ) ) |
73 |
|
df-res |
⊢ ( { 〈 dom 𝑈 , 2o 〉 } ↾ dom 𝑈 ) = ( { 〈 dom 𝑈 , 2o 〉 } ∩ ( dom 𝑈 × V ) ) |
74 |
|
2on |
⊢ 2o ∈ On |
75 |
|
xpsng |
⊢ ( ( dom 𝑈 ∈ On ∧ 2o ∈ On ) → ( { dom 𝑈 } × { 2o } ) = { 〈 dom 𝑈 , 2o 〉 } ) |
76 |
46 74 75
|
sylancl |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ( { dom 𝑈 } × { 2o } ) = { 〈 dom 𝑈 , 2o 〉 } ) |
77 |
76
|
ineq1d |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ( ( { dom 𝑈 } × { 2o } ) ∩ ( dom 𝑈 × V ) ) = ( { 〈 dom 𝑈 , 2o 〉 } ∩ ( dom 𝑈 × V ) ) ) |
78 |
|
incom |
⊢ ( { dom 𝑈 } ∩ dom 𝑈 ) = ( dom 𝑈 ∩ { dom 𝑈 } ) |
79 |
|
nodmord |
⊢ ( 𝑈 ∈ No → Ord dom 𝑈 ) |
80 |
|
ordirr |
⊢ ( Ord dom 𝑈 → ¬ dom 𝑈 ∈ dom 𝑈 ) |
81 |
30 79 80
|
3syl |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ¬ dom 𝑈 ∈ dom 𝑈 ) |
82 |
|
disjsn |
⊢ ( ( dom 𝑈 ∩ { dom 𝑈 } ) = ∅ ↔ ¬ dom 𝑈 ∈ dom 𝑈 ) |
83 |
81 82
|
sylibr |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ( dom 𝑈 ∩ { dom 𝑈 } ) = ∅ ) |
84 |
78 83
|
syl5eq |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ( { dom 𝑈 } ∩ dom 𝑈 ) = ∅ ) |
85 |
|
xpdisj1 |
⊢ ( ( { dom 𝑈 } ∩ dom 𝑈 ) = ∅ → ( ( { dom 𝑈 } × { 2o } ) ∩ ( dom 𝑈 × V ) ) = ∅ ) |
86 |
84 85
|
syl |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ( ( { dom 𝑈 } × { 2o } ) ∩ ( dom 𝑈 × V ) ) = ∅ ) |
87 |
77 86
|
eqtr3d |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ( { 〈 dom 𝑈 , 2o 〉 } ∩ ( dom 𝑈 × V ) ) = ∅ ) |
88 |
73 87
|
syl5eq |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ( { 〈 dom 𝑈 , 2o 〉 } ↾ dom 𝑈 ) = ∅ ) |
89 |
88
|
uneq2d |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ( ( 𝑈 ↾ dom 𝑈 ) ∪ ( { 〈 dom 𝑈 , 2o 〉 } ↾ dom 𝑈 ) ) = ( ( 𝑈 ↾ dom 𝑈 ) ∪ ∅ ) ) |
90 |
|
resundir |
⊢ ( ( 𝑈 ∪ { 〈 dom 𝑈 , 2o 〉 } ) ↾ dom 𝑈 ) = ( ( 𝑈 ↾ dom 𝑈 ) ∪ ( { 〈 dom 𝑈 , 2o 〉 } ↾ dom 𝑈 ) ) |
91 |
|
un0 |
⊢ ( ( 𝑈 ↾ dom 𝑈 ) ∪ ∅ ) = ( 𝑈 ↾ dom 𝑈 ) |
92 |
91
|
eqcomi |
⊢ ( 𝑈 ↾ dom 𝑈 ) = ( ( 𝑈 ↾ dom 𝑈 ) ∪ ∅ ) |
93 |
89 90 92
|
3eqtr4g |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ( ( 𝑈 ∪ { 〈 dom 𝑈 , 2o 〉 } ) ↾ dom 𝑈 ) = ( 𝑈 ↾ dom 𝑈 ) ) |
94 |
|
nofun |
⊢ ( 𝑈 ∈ No → Fun 𝑈 ) |
95 |
30 94
|
syl |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → Fun 𝑈 ) |
96 |
|
funrel |
⊢ ( Fun 𝑈 → Rel 𝑈 ) |
97 |
|
resdm |
⊢ ( Rel 𝑈 → ( 𝑈 ↾ dom 𝑈 ) = 𝑈 ) |
98 |
95 96 97
|
3syl |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ( 𝑈 ↾ dom 𝑈 ) = 𝑈 ) |
99 |
93 98
|
eqtrd |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ( ( 𝑈 ∪ { 〈 dom 𝑈 , 2o 〉 } ) ↾ dom 𝑈 ) = 𝑈 ) |
100 |
|
sssucid |
⊢ dom 𝑈 ⊆ suc dom 𝑈 |
101 |
|
resabs1 |
⊢ ( dom 𝑈 ⊆ suc dom 𝑈 → ( ( 𝑍 ↾ suc dom 𝑈 ) ↾ dom 𝑈 ) = ( 𝑍 ↾ dom 𝑈 ) ) |
102 |
100 101
|
mp1i |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ( ( 𝑍 ↾ suc dom 𝑈 ) ↾ dom 𝑈 ) = ( 𝑍 ↾ dom 𝑈 ) ) |
103 |
72 99 102
|
3brtr4d |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ( ( 𝑈 ∪ { 〈 dom 𝑈 , 2o 〉 } ) ↾ dom 𝑈 ) <s ( ( 𝑍 ↾ suc dom 𝑈 ) ↾ dom 𝑈 ) ) |
104 |
74
|
elexi |
⊢ 2o ∈ V |
105 |
104
|
prid2 |
⊢ 2o ∈ { 1o , 2o } |
106 |
105
|
noextend |
⊢ ( 𝑈 ∈ No → ( 𝑈 ∪ { 〈 dom 𝑈 , 2o 〉 } ) ∈ No ) |
107 |
8 106
|
syl |
⊢ ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) → ( 𝑈 ∪ { 〈 dom 𝑈 , 2o 〉 } ) ∈ No ) |
108 |
107
|
adantr |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ( 𝑈 ∪ { 〈 dom 𝑈 , 2o 〉 } ) ∈ No ) |
109 |
|
sucelon |
⊢ ( dom 𝑈 ∈ On ↔ suc dom 𝑈 ∈ On ) |
110 |
27 109
|
sylib |
⊢ ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) → suc dom 𝑈 ∈ On ) |
111 |
|
noreson |
⊢ ( ( 𝑍 ∈ No ∧ suc dom 𝑈 ∈ On ) → ( 𝑍 ↾ suc dom 𝑈 ) ∈ No ) |
112 |
9 110 111
|
syl2anc |
⊢ ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) → ( 𝑍 ↾ suc dom 𝑈 ) ∈ No ) |
113 |
112
|
adantr |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ( 𝑍 ↾ suc dom 𝑈 ) ∈ No ) |
114 |
|
sltres |
⊢ ( ( ( 𝑈 ∪ { 〈 dom 𝑈 , 2o 〉 } ) ∈ No ∧ ( 𝑍 ↾ suc dom 𝑈 ) ∈ No ∧ dom 𝑈 ∈ On ) → ( ( ( 𝑈 ∪ { 〈 dom 𝑈 , 2o 〉 } ) ↾ dom 𝑈 ) <s ( ( 𝑍 ↾ suc dom 𝑈 ) ↾ dom 𝑈 ) → ( 𝑈 ∪ { 〈 dom 𝑈 , 2o 〉 } ) <s ( 𝑍 ↾ suc dom 𝑈 ) ) ) |
115 |
108 113 46 114
|
syl3anc |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ( ( ( 𝑈 ∪ { 〈 dom 𝑈 , 2o 〉 } ) ↾ dom 𝑈 ) <s ( ( 𝑍 ↾ suc dom 𝑈 ) ↾ dom 𝑈 ) → ( 𝑈 ∪ { 〈 dom 𝑈 , 2o 〉 } ) <s ( 𝑍 ↾ suc dom 𝑈 ) ) ) |
116 |
103 115
|
mpd |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ( 𝑈 ∪ { 〈 dom 𝑈 , 2o 〉 } ) <s ( 𝑍 ↾ suc dom 𝑈 ) ) |
117 |
|
soasym |
⊢ ( ( <s Or No ∧ ( ( 𝑈 ∪ { 〈 dom 𝑈 , 2o 〉 } ) ∈ No ∧ ( 𝑍 ↾ suc dom 𝑈 ) ∈ No ) ) → ( ( 𝑈 ∪ { 〈 dom 𝑈 , 2o 〉 } ) <s ( 𝑍 ↾ suc dom 𝑈 ) → ¬ ( 𝑍 ↾ suc dom 𝑈 ) <s ( 𝑈 ∪ { 〈 dom 𝑈 , 2o 〉 } ) ) ) |
118 |
12 117
|
mpan |
⊢ ( ( ( 𝑈 ∪ { 〈 dom 𝑈 , 2o 〉 } ) ∈ No ∧ ( 𝑍 ↾ suc dom 𝑈 ) ∈ No ) → ( ( 𝑈 ∪ { 〈 dom 𝑈 , 2o 〉 } ) <s ( 𝑍 ↾ suc dom 𝑈 ) → ¬ ( 𝑍 ↾ suc dom 𝑈 ) <s ( 𝑈 ∪ { 〈 dom 𝑈 , 2o 〉 } ) ) ) |
119 |
108 113 118
|
syl2anc |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ( ( 𝑈 ∪ { 〈 dom 𝑈 , 2o 〉 } ) <s ( 𝑍 ↾ suc dom 𝑈 ) → ¬ ( 𝑍 ↾ suc dom 𝑈 ) <s ( 𝑈 ∪ { 〈 dom 𝑈 , 2o 〉 } ) ) ) |
120 |
116 119
|
mpd |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ¬ ( 𝑍 ↾ suc dom 𝑈 ) <s ( 𝑈 ∪ { 〈 dom 𝑈 , 2o 〉 } ) ) |
121 |
|
df-suc |
⊢ suc dom 𝑈 = ( dom 𝑈 ∪ { dom 𝑈 } ) |
122 |
121
|
reseq2i |
⊢ ( 𝑍 ↾ suc dom 𝑈 ) = ( 𝑍 ↾ ( dom 𝑈 ∪ { dom 𝑈 } ) ) |
123 |
|
resundi |
⊢ ( 𝑍 ↾ ( dom 𝑈 ∪ { dom 𝑈 } ) ) = ( ( 𝑍 ↾ dom 𝑈 ) ∪ ( 𝑍 ↾ { dom 𝑈 } ) ) |
124 |
122 123
|
eqtri |
⊢ ( 𝑍 ↾ suc dom 𝑈 ) = ( ( 𝑍 ↾ dom 𝑈 ) ∪ ( 𝑍 ↾ { dom 𝑈 } ) ) |
125 |
|
dmres |
⊢ dom ( 𝑍 ↾ dom 𝑈 ) = ( dom 𝑈 ∩ dom 𝑍 ) |
126 |
|
simpr |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) |
127 |
|
necom |
⊢ ( ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) ↔ ( 𝑍 ‘ 𝑥 ) ≠ ( 𝑈 ‘ 𝑥 ) ) |
128 |
127
|
rabbii |
⊢ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = { 𝑥 ∈ On ∣ ( 𝑍 ‘ 𝑥 ) ≠ ( 𝑈 ‘ 𝑥 ) } |
129 |
128
|
inteqi |
⊢ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = ∩ { 𝑥 ∈ On ∣ ( 𝑍 ‘ 𝑥 ) ≠ ( 𝑈 ‘ 𝑥 ) } |
130 |
9
|
adantr |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → 𝑍 ∈ No ) |
131 |
8
|
adantr |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → 𝑈 ∈ No ) |
132 |
21
|
adantr |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → 𝑈 ≠ 𝑍 ) |
133 |
132
|
necomd |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → 𝑍 ≠ 𝑈 ) |
134 |
|
nosepssdm |
⊢ ( ( 𝑍 ∈ No ∧ 𝑈 ∈ No ∧ 𝑍 ≠ 𝑈 ) → ∩ { 𝑥 ∈ On ∣ ( 𝑍 ‘ 𝑥 ) ≠ ( 𝑈 ‘ 𝑥 ) } ⊆ dom 𝑍 ) |
135 |
130 131 133 134
|
syl3anc |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ∩ { 𝑥 ∈ On ∣ ( 𝑍 ‘ 𝑥 ) ≠ ( 𝑈 ‘ 𝑥 ) } ⊆ dom 𝑍 ) |
136 |
129 135
|
eqsstrid |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ⊆ dom 𝑍 ) |
137 |
126 136
|
eqsstrrd |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → dom 𝑈 ⊆ dom 𝑍 ) |
138 |
|
df-ss |
⊢ ( dom 𝑈 ⊆ dom 𝑍 ↔ ( dom 𝑈 ∩ dom 𝑍 ) = dom 𝑈 ) |
139 |
137 138
|
sylib |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ( dom 𝑈 ∩ dom 𝑍 ) = dom 𝑈 ) |
140 |
125 139
|
syl5eq |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → dom ( 𝑍 ↾ dom 𝑈 ) = dom 𝑈 ) |
141 |
140
|
eleq2d |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ( 𝑞 ∈ dom ( 𝑍 ↾ dom 𝑈 ) ↔ 𝑞 ∈ dom 𝑈 ) ) |
142 |
|
simpr |
⊢ ( ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) ∧ 𝑞 ∈ dom 𝑈 ) → 𝑞 ∈ dom 𝑈 ) |
143 |
142
|
fvresd |
⊢ ( ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) ∧ 𝑞 ∈ dom 𝑈 ) → ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑞 ) = ( 𝑍 ‘ 𝑞 ) ) |
144 |
131 26
|
syl |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → dom 𝑈 ∈ On ) |
145 |
|
onelon |
⊢ ( ( dom 𝑈 ∈ On ∧ 𝑞 ∈ dom 𝑈 ) → 𝑞 ∈ On ) |
146 |
144 145
|
sylan |
⊢ ( ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) ∧ 𝑞 ∈ dom 𝑈 ) → 𝑞 ∈ On ) |
147 |
126
|
eleq2d |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ( 𝑞 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ↔ 𝑞 ∈ dom 𝑈 ) ) |
148 |
147
|
biimpar |
⊢ ( ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) ∧ 𝑞 ∈ dom 𝑈 ) → 𝑞 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) |
149 |
146 148 40
|
sylc |
⊢ ( ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) ∧ 𝑞 ∈ dom 𝑈 ) → ¬ ( 𝑈 ‘ 𝑞 ) ≠ ( 𝑍 ‘ 𝑞 ) ) |
150 |
|
nesym |
⊢ ( ( 𝑈 ‘ 𝑞 ) ≠ ( 𝑍 ‘ 𝑞 ) ↔ ¬ ( 𝑍 ‘ 𝑞 ) = ( 𝑈 ‘ 𝑞 ) ) |
151 |
150
|
con2bii |
⊢ ( ( 𝑍 ‘ 𝑞 ) = ( 𝑈 ‘ 𝑞 ) ↔ ¬ ( 𝑈 ‘ 𝑞 ) ≠ ( 𝑍 ‘ 𝑞 ) ) |
152 |
149 151
|
sylibr |
⊢ ( ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) ∧ 𝑞 ∈ dom 𝑈 ) → ( 𝑍 ‘ 𝑞 ) = ( 𝑈 ‘ 𝑞 ) ) |
153 |
143 152
|
eqtrd |
⊢ ( ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) ∧ 𝑞 ∈ dom 𝑈 ) → ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑞 ) = ( 𝑈 ‘ 𝑞 ) ) |
154 |
153
|
ex |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ( 𝑞 ∈ dom 𝑈 → ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑞 ) = ( 𝑈 ‘ 𝑞 ) ) ) |
155 |
141 154
|
sylbid |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ( 𝑞 ∈ dom ( 𝑍 ↾ dom 𝑈 ) → ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑞 ) = ( 𝑈 ‘ 𝑞 ) ) ) |
156 |
155
|
ralrimiv |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ∀ 𝑞 ∈ dom ( 𝑍 ↾ dom 𝑈 ) ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑞 ) = ( 𝑈 ‘ 𝑞 ) ) |
157 |
|
nofun |
⊢ ( 𝑍 ∈ No → Fun 𝑍 ) |
158 |
|
funres |
⊢ ( Fun 𝑍 → Fun ( 𝑍 ↾ dom 𝑈 ) ) |
159 |
130 157 158
|
3syl |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → Fun ( 𝑍 ↾ dom 𝑈 ) ) |
160 |
131 94
|
syl |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → Fun 𝑈 ) |
161 |
|
eqfunfv |
⊢ ( ( Fun ( 𝑍 ↾ dom 𝑈 ) ∧ Fun 𝑈 ) → ( ( 𝑍 ↾ dom 𝑈 ) = 𝑈 ↔ ( dom ( 𝑍 ↾ dom 𝑈 ) = dom 𝑈 ∧ ∀ 𝑞 ∈ dom ( 𝑍 ↾ dom 𝑈 ) ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑞 ) = ( 𝑈 ‘ 𝑞 ) ) ) ) |
162 |
159 160 161
|
syl2anc |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ( ( 𝑍 ↾ dom 𝑈 ) = 𝑈 ↔ ( dom ( 𝑍 ↾ dom 𝑈 ) = dom 𝑈 ∧ ∀ 𝑞 ∈ dom ( 𝑍 ↾ dom 𝑈 ) ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑞 ) = ( 𝑈 ‘ 𝑞 ) ) ) ) |
163 |
140 156 162
|
mpbir2and |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ( 𝑍 ↾ dom 𝑈 ) = 𝑈 ) |
164 |
130 157
|
syl |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → Fun 𝑍 ) |
165 |
|
funfn |
⊢ ( Fun 𝑍 ↔ 𝑍 Fn dom 𝑍 ) |
166 |
164 165
|
sylib |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → 𝑍 Fn dom 𝑍 ) |
167 |
|
1oex |
⊢ 1o ∈ V |
168 |
167
|
prid1 |
⊢ 1o ∈ { 1o , 2o } |
169 |
168
|
nosgnn0i |
⊢ ∅ ≠ 1o |
170 |
131 79
|
syl |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → Ord dom 𝑈 ) |
171 |
|
ndmfv |
⊢ ( ¬ dom 𝑈 ∈ dom 𝑈 → ( 𝑈 ‘ dom 𝑈 ) = ∅ ) |
172 |
170 80 171
|
3syl |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ( 𝑈 ‘ dom 𝑈 ) = ∅ ) |
173 |
172
|
neeq1d |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ( ( 𝑈 ‘ dom 𝑈 ) ≠ 1o ↔ ∅ ≠ 1o ) ) |
174 |
169 173
|
mpbiri |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ( 𝑈 ‘ dom 𝑈 ) ≠ 1o ) |
175 |
174
|
neneqd |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ¬ ( 𝑈 ‘ dom 𝑈 ) = 1o ) |
176 |
175
|
intnanrd |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ¬ ( ( 𝑈 ‘ dom 𝑈 ) = 1o ∧ ( 𝑍 ‘ dom 𝑈 ) = ∅ ) ) |
177 |
175
|
intnanrd |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ¬ ( ( 𝑈 ‘ dom 𝑈 ) = 1o ∧ ( 𝑍 ‘ dom 𝑈 ) = 2o ) ) |
178 |
|
simplr |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → 𝑈 <s 𝑍 ) |
179 |
131 130 55
|
syl2anc |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ( 𝑈 <s 𝑍 ↔ ( 𝑈 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝑍 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) ) ) |
180 |
178 179
|
mpbid |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ( 𝑈 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝑍 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) ) |
181 |
|
fveq2 |
⊢ ( ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 → ( 𝑈 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) = ( 𝑈 ‘ dom 𝑈 ) ) |
182 |
181
|
adantl |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ( 𝑈 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) = ( 𝑈 ‘ dom 𝑈 ) ) |
183 |
|
fveq2 |
⊢ ( ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 → ( 𝑍 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) = ( 𝑍 ‘ dom 𝑈 ) ) |
184 |
183
|
adantl |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ( 𝑍 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) = ( 𝑍 ‘ dom 𝑈 ) ) |
185 |
180 182 184
|
3brtr3d |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ( 𝑈 ‘ dom 𝑈 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝑍 ‘ dom 𝑈 ) ) |
186 |
|
fvex |
⊢ ( 𝑈 ‘ dom 𝑈 ) ∈ V |
187 |
|
fvex |
⊢ ( 𝑍 ‘ dom 𝑈 ) ∈ V |
188 |
186 187
|
brtp |
⊢ ( ( 𝑈 ‘ dom 𝑈 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝑍 ‘ dom 𝑈 ) ↔ ( ( ( 𝑈 ‘ dom 𝑈 ) = 1o ∧ ( 𝑍 ‘ dom 𝑈 ) = ∅ ) ∨ ( ( 𝑈 ‘ dom 𝑈 ) = 1o ∧ ( 𝑍 ‘ dom 𝑈 ) = 2o ) ∨ ( ( 𝑈 ‘ dom 𝑈 ) = ∅ ∧ ( 𝑍 ‘ dom 𝑈 ) = 2o ) ) ) |
189 |
|
3orrot |
⊢ ( ( ( ( 𝑈 ‘ dom 𝑈 ) = 1o ∧ ( 𝑍 ‘ dom 𝑈 ) = ∅ ) ∨ ( ( 𝑈 ‘ dom 𝑈 ) = 1o ∧ ( 𝑍 ‘ dom 𝑈 ) = 2o ) ∨ ( ( 𝑈 ‘ dom 𝑈 ) = ∅ ∧ ( 𝑍 ‘ dom 𝑈 ) = 2o ) ) ↔ ( ( ( 𝑈 ‘ dom 𝑈 ) = 1o ∧ ( 𝑍 ‘ dom 𝑈 ) = 2o ) ∨ ( ( 𝑈 ‘ dom 𝑈 ) = ∅ ∧ ( 𝑍 ‘ dom 𝑈 ) = 2o ) ∨ ( ( 𝑈 ‘ dom 𝑈 ) = 1o ∧ ( 𝑍 ‘ dom 𝑈 ) = ∅ ) ) ) |
190 |
|
3orrot |
⊢ ( ( ( ( 𝑈 ‘ dom 𝑈 ) = 1o ∧ ( 𝑍 ‘ dom 𝑈 ) = 2o ) ∨ ( ( 𝑈 ‘ dom 𝑈 ) = ∅ ∧ ( 𝑍 ‘ dom 𝑈 ) = 2o ) ∨ ( ( 𝑈 ‘ dom 𝑈 ) = 1o ∧ ( 𝑍 ‘ dom 𝑈 ) = ∅ ) ) ↔ ( ( ( 𝑈 ‘ dom 𝑈 ) = ∅ ∧ ( 𝑍 ‘ dom 𝑈 ) = 2o ) ∨ ( ( 𝑈 ‘ dom 𝑈 ) = 1o ∧ ( 𝑍 ‘ dom 𝑈 ) = ∅ ) ∨ ( ( 𝑈 ‘ dom 𝑈 ) = 1o ∧ ( 𝑍 ‘ dom 𝑈 ) = 2o ) ) ) |
191 |
188 189 190
|
3bitri |
⊢ ( ( 𝑈 ‘ dom 𝑈 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝑍 ‘ dom 𝑈 ) ↔ ( ( ( 𝑈 ‘ dom 𝑈 ) = ∅ ∧ ( 𝑍 ‘ dom 𝑈 ) = 2o ) ∨ ( ( 𝑈 ‘ dom 𝑈 ) = 1o ∧ ( 𝑍 ‘ dom 𝑈 ) = ∅ ) ∨ ( ( 𝑈 ‘ dom 𝑈 ) = 1o ∧ ( 𝑍 ‘ dom 𝑈 ) = 2o ) ) ) |
192 |
185 191
|
sylib |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ( ( ( 𝑈 ‘ dom 𝑈 ) = ∅ ∧ ( 𝑍 ‘ dom 𝑈 ) = 2o ) ∨ ( ( 𝑈 ‘ dom 𝑈 ) = 1o ∧ ( 𝑍 ‘ dom 𝑈 ) = ∅ ) ∨ ( ( 𝑈 ‘ dom 𝑈 ) = 1o ∧ ( 𝑍 ‘ dom 𝑈 ) = 2o ) ) ) |
193 |
176 177 192
|
ecase23d |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ( ( 𝑈 ‘ dom 𝑈 ) = ∅ ∧ ( 𝑍 ‘ dom 𝑈 ) = 2o ) ) |
194 |
193
|
simprd |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ( 𝑍 ‘ dom 𝑈 ) = 2o ) |
195 |
|
ndmfv |
⊢ ( ¬ dom 𝑈 ∈ dom 𝑍 → ( 𝑍 ‘ dom 𝑈 ) = ∅ ) |
196 |
105
|
nosgnn0i |
⊢ ∅ ≠ 2o |
197 |
|
neeq1 |
⊢ ( ( 𝑍 ‘ dom 𝑈 ) = ∅ → ( ( 𝑍 ‘ dom 𝑈 ) ≠ 2o ↔ ∅ ≠ 2o ) ) |
198 |
196 197
|
mpbiri |
⊢ ( ( 𝑍 ‘ dom 𝑈 ) = ∅ → ( 𝑍 ‘ dom 𝑈 ) ≠ 2o ) |
199 |
198
|
neneqd |
⊢ ( ( 𝑍 ‘ dom 𝑈 ) = ∅ → ¬ ( 𝑍 ‘ dom 𝑈 ) = 2o ) |
200 |
195 199
|
syl |
⊢ ( ¬ dom 𝑈 ∈ dom 𝑍 → ¬ ( 𝑍 ‘ dom 𝑈 ) = 2o ) |
201 |
200
|
con4i |
⊢ ( ( 𝑍 ‘ dom 𝑈 ) = 2o → dom 𝑈 ∈ dom 𝑍 ) |
202 |
194 201
|
syl |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → dom 𝑈 ∈ dom 𝑍 ) |
203 |
|
fnressn |
⊢ ( ( 𝑍 Fn dom 𝑍 ∧ dom 𝑈 ∈ dom 𝑍 ) → ( 𝑍 ↾ { dom 𝑈 } ) = { 〈 dom 𝑈 , ( 𝑍 ‘ dom 𝑈 ) 〉 } ) |
204 |
166 202 203
|
syl2anc |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ( 𝑍 ↾ { dom 𝑈 } ) = { 〈 dom 𝑈 , ( 𝑍 ‘ dom 𝑈 ) 〉 } ) |
205 |
194
|
opeq2d |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → 〈 dom 𝑈 , ( 𝑍 ‘ dom 𝑈 ) 〉 = 〈 dom 𝑈 , 2o 〉 ) |
206 |
205
|
sneqd |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → { 〈 dom 𝑈 , ( 𝑍 ‘ dom 𝑈 ) 〉 } = { 〈 dom 𝑈 , 2o 〉 } ) |
207 |
204 206
|
eqtrd |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ( 𝑍 ↾ { dom 𝑈 } ) = { 〈 dom 𝑈 , 2o 〉 } ) |
208 |
163 207
|
uneq12d |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ( ( 𝑍 ↾ dom 𝑈 ) ∪ ( 𝑍 ↾ { dom 𝑈 } ) ) = ( 𝑈 ∪ { 〈 dom 𝑈 , 2o 〉 } ) ) |
209 |
124 208
|
syl5eq |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ( 𝑍 ↾ suc dom 𝑈 ) = ( 𝑈 ∪ { 〈 dom 𝑈 , 2o 〉 } ) ) |
210 |
|
sonr |
⊢ ( ( <s Or No ∧ ( 𝑈 ∪ { 〈 dom 𝑈 , 2o 〉 } ) ∈ No ) → ¬ ( 𝑈 ∪ { 〈 dom 𝑈 , 2o 〉 } ) <s ( 𝑈 ∪ { 〈 dom 𝑈 , 2o 〉 } ) ) |
211 |
12 210
|
mpan |
⊢ ( ( 𝑈 ∪ { 〈 dom 𝑈 , 2o 〉 } ) ∈ No → ¬ ( 𝑈 ∪ { 〈 dom 𝑈 , 2o 〉 } ) <s ( 𝑈 ∪ { 〈 dom 𝑈 , 2o 〉 } ) ) |
212 |
131 106 211
|
3syl |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ¬ ( 𝑈 ∪ { 〈 dom 𝑈 , 2o 〉 } ) <s ( 𝑈 ∪ { 〈 dom 𝑈 , 2o 〉 } ) ) |
213 |
209 212
|
eqnbrtrd |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ¬ ( 𝑍 ↾ suc dom 𝑈 ) <s ( 𝑈 ∪ { 〈 dom 𝑈 , 2o 〉 } ) ) |
214 |
120 213
|
jaodan |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ( ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ∨ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) ) → ¬ ( 𝑍 ↾ suc dom 𝑈 ) <s ( 𝑈 ∪ { 〈 dom 𝑈 , 2o 〉 } ) ) |
215 |
214
|
ex |
⊢ ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) → ( ( ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ∨ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ¬ ( 𝑍 ↾ suc dom 𝑈 ) <s ( 𝑈 ∪ { 〈 dom 𝑈 , 2o 〉 } ) ) ) |
216 |
29 215
|
sylbid |
⊢ ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) → ( ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ⊆ dom 𝑈 → ¬ ( 𝑍 ↾ suc dom 𝑈 ) <s ( 𝑈 ∪ { 〈 dom 𝑈 , 2o 〉 } ) ) ) |
217 |
23 216
|
mpd |
⊢ ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) → ¬ ( 𝑍 ↾ suc dom 𝑈 ) <s ( 𝑈 ∪ { 〈 dom 𝑈 , 2o 〉 } ) ) |
218 |
5 217
|
mpdan |
⊢ ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) → ¬ ( 𝑍 ↾ suc dom 𝑈 ) <s ( 𝑈 ∪ { 〈 dom 𝑈 , 2o 〉 } ) ) |