| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp1l | ⊢ ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  →  𝑈  ∈  𝐴 ) | 
						
							| 2 |  | simp3 | ⊢ ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  →  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 ) | 
						
							| 3 |  | breq1 | ⊢ ( 𝑎  =  𝑈  →  ( 𝑎  <s  𝑍  ↔  𝑈  <s  𝑍 ) ) | 
						
							| 4 | 3 | rspcv | ⊢ ( 𝑈  ∈  𝐴  →  ( ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍  →  𝑈  <s  𝑍 ) ) | 
						
							| 5 | 1 2 4 | sylc | ⊢ ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  →  𝑈  <s  𝑍 ) | 
						
							| 6 |  | simpl21 | ⊢ ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  →  𝐴  ⊆   No  ) | 
						
							| 7 |  | simpl1l | ⊢ ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  →  𝑈  ∈  𝐴 ) | 
						
							| 8 | 6 7 | sseldd | ⊢ ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  →  𝑈  ∈   No  ) | 
						
							| 9 |  | simpl23 | ⊢ ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  →  𝑍  ∈   No  ) | 
						
							| 10 |  | simp21 | ⊢ ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  →  𝐴  ⊆   No  ) | 
						
							| 11 | 10 1 | sseldd | ⊢ ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  →  𝑈  ∈   No  ) | 
						
							| 12 |  | sltso | ⊢  <s   Or   No | 
						
							| 13 |  | sonr | ⊢ ( (  <s   Or   No   ∧  𝑈  ∈   No  )  →  ¬  𝑈  <s  𝑈 ) | 
						
							| 14 | 12 13 | mpan | ⊢ ( 𝑈  ∈   No   →  ¬  𝑈  <s  𝑈 ) | 
						
							| 15 | 11 14 | syl | ⊢ ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  →  ¬  𝑈  <s  𝑈 ) | 
						
							| 16 |  | breq2 | ⊢ ( 𝑈  =  𝑍  →  ( 𝑈  <s  𝑈  ↔  𝑈  <s  𝑍 ) ) | 
						
							| 17 | 16 | notbid | ⊢ ( 𝑈  =  𝑍  →  ( ¬  𝑈  <s  𝑈  ↔  ¬  𝑈  <s  𝑍 ) ) | 
						
							| 18 | 15 17 | syl5ibcom | ⊢ ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  →  ( 𝑈  =  𝑍  →  ¬  𝑈  <s  𝑍 ) ) | 
						
							| 19 | 18 | con2d | ⊢ ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  →  ( 𝑈  <s  𝑍  →  ¬  𝑈  =  𝑍 ) ) | 
						
							| 20 | 19 | imp | ⊢ ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  →  ¬  𝑈  =  𝑍 ) | 
						
							| 21 | 20 | neqned | ⊢ ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  →  𝑈  ≠  𝑍 ) | 
						
							| 22 |  | nosepssdm | ⊢ ( ( 𝑈  ∈   No   ∧  𝑍  ∈   No   ∧  𝑈  ≠  𝑍 )  →  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  ⊆  dom  𝑈 ) | 
						
							| 23 | 8 9 21 22 | syl3anc | ⊢ ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  →  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  ⊆  dom  𝑈 ) | 
						
							| 24 |  | nosepon | ⊢ ( ( 𝑈  ∈   No   ∧  𝑍  ∈   No   ∧  𝑈  ≠  𝑍 )  →  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  ∈  On ) | 
						
							| 25 | 8 9 21 24 | syl3anc | ⊢ ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  →  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  ∈  On ) | 
						
							| 26 |  | nodmon | ⊢ ( 𝑈  ∈   No   →  dom  𝑈  ∈  On ) | 
						
							| 27 | 8 26 | syl | ⊢ ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  →  dom  𝑈  ∈  On ) | 
						
							| 28 |  | onsseleq | ⊢ ( ( ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  ∈  On  ∧  dom  𝑈  ∈  On )  →  ( ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  ⊆  dom  𝑈  ↔  ( ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  ∈  dom  𝑈  ∨  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  =  dom  𝑈 ) ) ) | 
						
							| 29 | 25 27 28 | syl2anc | ⊢ ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  →  ( ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  ⊆  dom  𝑈  ↔  ( ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  ∈  dom  𝑈  ∨  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  =  dom  𝑈 ) ) ) | 
						
							| 30 | 8 | adantr | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  ∈  dom  𝑈 )  →  𝑈  ∈   No  ) | 
						
							| 31 | 9 | adantr | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  ∈  dom  𝑈 )  →  𝑍  ∈   No  ) | 
						
							| 32 | 21 | adantr | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  ∈  dom  𝑈 )  →  𝑈  ≠  𝑍 ) | 
						
							| 33 | 30 31 32 24 | syl3anc | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  ∈  dom  𝑈 )  →  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  ∈  On ) | 
						
							| 34 |  | onelon | ⊢ ( ( ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  ∈  On  ∧  𝑞  ∈  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) } )  →  𝑞  ∈  On ) | 
						
							| 35 | 33 34 | sylan | ⊢ ( ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  ∈  dom  𝑈 )  ∧  𝑞  ∈  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) } )  →  𝑞  ∈  On ) | 
						
							| 36 |  | simpr | ⊢ ( ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  ∈  dom  𝑈 )  ∧  𝑞  ∈  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) } )  →  𝑞  ∈  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) } ) | 
						
							| 37 |  | fveq2 | ⊢ ( 𝑥  =  𝑞  →  ( 𝑈 ‘ 𝑥 )  =  ( 𝑈 ‘ 𝑞 ) ) | 
						
							| 38 |  | fveq2 | ⊢ ( 𝑥  =  𝑞  →  ( 𝑍 ‘ 𝑥 )  =  ( 𝑍 ‘ 𝑞 ) ) | 
						
							| 39 | 37 38 | neeq12d | ⊢ ( 𝑥  =  𝑞  →  ( ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 )  ↔  ( 𝑈 ‘ 𝑞 )  ≠  ( 𝑍 ‘ 𝑞 ) ) ) | 
						
							| 40 | 39 | onnminsb | ⊢ ( 𝑞  ∈  On  →  ( 𝑞  ∈  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  →  ¬  ( 𝑈 ‘ 𝑞 )  ≠  ( 𝑍 ‘ 𝑞 ) ) ) | 
						
							| 41 | 35 36 40 | sylc | ⊢ ( ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  ∈  dom  𝑈 )  ∧  𝑞  ∈  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) } )  →  ¬  ( 𝑈 ‘ 𝑞 )  ≠  ( 𝑍 ‘ 𝑞 ) ) | 
						
							| 42 |  | df-ne | ⊢ ( ( 𝑈 ‘ 𝑞 )  ≠  ( 𝑍 ‘ 𝑞 )  ↔  ¬  ( 𝑈 ‘ 𝑞 )  =  ( 𝑍 ‘ 𝑞 ) ) | 
						
							| 43 | 42 | con2bii | ⊢ ( ( 𝑈 ‘ 𝑞 )  =  ( 𝑍 ‘ 𝑞 )  ↔  ¬  ( 𝑈 ‘ 𝑞 )  ≠  ( 𝑍 ‘ 𝑞 ) ) | 
						
							| 44 | 41 43 | sylibr | ⊢ ( ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  ∈  dom  𝑈 )  ∧  𝑞  ∈  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) } )  →  ( 𝑈 ‘ 𝑞 )  =  ( 𝑍 ‘ 𝑞 ) ) | 
						
							| 45 |  | simplr | ⊢ ( ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  ∈  dom  𝑈 )  ∧  𝑞  ∈  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) } )  →  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  ∈  dom  𝑈 ) | 
						
							| 46 | 27 | adantr | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  ∈  dom  𝑈 )  →  dom  𝑈  ∈  On ) | 
						
							| 47 | 46 | adantr | ⊢ ( ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  ∈  dom  𝑈 )  ∧  𝑞  ∈  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) } )  →  dom  𝑈  ∈  On ) | 
						
							| 48 |  | ontr1 | ⊢ ( dom  𝑈  ∈  On  →  ( ( 𝑞  ∈  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  ∈  dom  𝑈 )  →  𝑞  ∈  dom  𝑈 ) ) | 
						
							| 49 | 47 48 | syl | ⊢ ( ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  ∈  dom  𝑈 )  ∧  𝑞  ∈  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) } )  →  ( ( 𝑞  ∈  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  ∈  dom  𝑈 )  →  𝑞  ∈  dom  𝑈 ) ) | 
						
							| 50 | 36 45 49 | mp2and | ⊢ ( ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  ∈  dom  𝑈 )  ∧  𝑞  ∈  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) } )  →  𝑞  ∈  dom  𝑈 ) | 
						
							| 51 | 50 | fvresd | ⊢ ( ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  ∈  dom  𝑈 )  ∧  𝑞  ∈  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) } )  →  ( ( 𝑍  ↾  dom  𝑈 ) ‘ 𝑞 )  =  ( 𝑍 ‘ 𝑞 ) ) | 
						
							| 52 | 44 51 | eqtr4d | ⊢ ( ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  ∈  dom  𝑈 )  ∧  𝑞  ∈  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) } )  →  ( 𝑈 ‘ 𝑞 )  =  ( ( 𝑍  ↾  dom  𝑈 ) ‘ 𝑞 ) ) | 
						
							| 53 | 52 | ralrimiva | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  ∈  dom  𝑈 )  →  ∀ 𝑞  ∈  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) } ( 𝑈 ‘ 𝑞 )  =  ( ( 𝑍  ↾  dom  𝑈 ) ‘ 𝑞 ) ) | 
						
							| 54 |  | simplr | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  ∈  dom  𝑈 )  →  𝑈  <s  𝑍 ) | 
						
							| 55 |  | sltval2 | ⊢ ( ( 𝑈  ∈   No   ∧  𝑍  ∈   No  )  →  ( 𝑈  <s  𝑍  ↔  ( 𝑈 ‘ ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) } ) { 〈 1o ,  ∅ 〉 ,  〈 1o ,  2o 〉 ,  〈 ∅ ,  2o 〉 } ( 𝑍 ‘ ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) } ) ) ) | 
						
							| 56 | 30 31 55 | syl2anc | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  ∈  dom  𝑈 )  →  ( 𝑈  <s  𝑍  ↔  ( 𝑈 ‘ ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) } ) { 〈 1o ,  ∅ 〉 ,  〈 1o ,  2o 〉 ,  〈 ∅ ,  2o 〉 } ( 𝑍 ‘ ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) } ) ) ) | 
						
							| 57 | 54 56 | mpbid | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  ∈  dom  𝑈 )  →  ( 𝑈 ‘ ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) } ) { 〈 1o ,  ∅ 〉 ,  〈 1o ,  2o 〉 ,  〈 ∅ ,  2o 〉 } ( 𝑍 ‘ ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) } ) ) | 
						
							| 58 |  | simpr | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  ∈  dom  𝑈 )  →  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  ∈  dom  𝑈 ) | 
						
							| 59 | 58 | fvresd | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  ∈  dom  𝑈 )  →  ( ( 𝑍  ↾  dom  𝑈 ) ‘ ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) } )  =  ( 𝑍 ‘ ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) } ) ) | 
						
							| 60 | 57 59 | breqtrrd | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  ∈  dom  𝑈 )  →  ( 𝑈 ‘ ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) } ) { 〈 1o ,  ∅ 〉 ,  〈 1o ,  2o 〉 ,  〈 ∅ ,  2o 〉 } ( ( 𝑍  ↾  dom  𝑈 ) ‘ ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) } ) ) | 
						
							| 61 |  | raleq | ⊢ ( 𝑝  =  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  →  ( ∀ 𝑞  ∈  𝑝 ( 𝑈 ‘ 𝑞 )  =  ( ( 𝑍  ↾  dom  𝑈 ) ‘ 𝑞 )  ↔  ∀ 𝑞  ∈  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) } ( 𝑈 ‘ 𝑞 )  =  ( ( 𝑍  ↾  dom  𝑈 ) ‘ 𝑞 ) ) ) | 
						
							| 62 |  | fveq2 | ⊢ ( 𝑝  =  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  →  ( 𝑈 ‘ 𝑝 )  =  ( 𝑈 ‘ ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) } ) ) | 
						
							| 63 |  | fveq2 | ⊢ ( 𝑝  =  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  →  ( ( 𝑍  ↾  dom  𝑈 ) ‘ 𝑝 )  =  ( ( 𝑍  ↾  dom  𝑈 ) ‘ ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) } ) ) | 
						
							| 64 | 62 63 | breq12d | ⊢ ( 𝑝  =  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  →  ( ( 𝑈 ‘ 𝑝 ) { 〈 1o ,  ∅ 〉 ,  〈 1o ,  2o 〉 ,  〈 ∅ ,  2o 〉 } ( ( 𝑍  ↾  dom  𝑈 ) ‘ 𝑝 )  ↔  ( 𝑈 ‘ ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) } ) { 〈 1o ,  ∅ 〉 ,  〈 1o ,  2o 〉 ,  〈 ∅ ,  2o 〉 } ( ( 𝑍  ↾  dom  𝑈 ) ‘ ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) } ) ) ) | 
						
							| 65 | 61 64 | anbi12d | ⊢ ( 𝑝  =  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  →  ( ( ∀ 𝑞  ∈  𝑝 ( 𝑈 ‘ 𝑞 )  =  ( ( 𝑍  ↾  dom  𝑈 ) ‘ 𝑞 )  ∧  ( 𝑈 ‘ 𝑝 ) { 〈 1o ,  ∅ 〉 ,  〈 1o ,  2o 〉 ,  〈 ∅ ,  2o 〉 } ( ( 𝑍  ↾  dom  𝑈 ) ‘ 𝑝 ) )  ↔  ( ∀ 𝑞  ∈  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) } ( 𝑈 ‘ 𝑞 )  =  ( ( 𝑍  ↾  dom  𝑈 ) ‘ 𝑞 )  ∧  ( 𝑈 ‘ ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) } ) { 〈 1o ,  ∅ 〉 ,  〈 1o ,  2o 〉 ,  〈 ∅ ,  2o 〉 } ( ( 𝑍  ↾  dom  𝑈 ) ‘ ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) } ) ) ) ) | 
						
							| 66 | 65 | rspcev | ⊢ ( ( ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  ∈  On  ∧  ( ∀ 𝑞  ∈  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) } ( 𝑈 ‘ 𝑞 )  =  ( ( 𝑍  ↾  dom  𝑈 ) ‘ 𝑞 )  ∧  ( 𝑈 ‘ ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) } ) { 〈 1o ,  ∅ 〉 ,  〈 1o ,  2o 〉 ,  〈 ∅ ,  2o 〉 } ( ( 𝑍  ↾  dom  𝑈 ) ‘ ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) } ) ) )  →  ∃ 𝑝  ∈  On ( ∀ 𝑞  ∈  𝑝 ( 𝑈 ‘ 𝑞 )  =  ( ( 𝑍  ↾  dom  𝑈 ) ‘ 𝑞 )  ∧  ( 𝑈 ‘ 𝑝 ) { 〈 1o ,  ∅ 〉 ,  〈 1o ,  2o 〉 ,  〈 ∅ ,  2o 〉 } ( ( 𝑍  ↾  dom  𝑈 ) ‘ 𝑝 ) ) ) | 
						
							| 67 | 33 53 60 66 | syl12anc | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  ∈  dom  𝑈 )  →  ∃ 𝑝  ∈  On ( ∀ 𝑞  ∈  𝑝 ( 𝑈 ‘ 𝑞 )  =  ( ( 𝑍  ↾  dom  𝑈 ) ‘ 𝑞 )  ∧  ( 𝑈 ‘ 𝑝 ) { 〈 1o ,  ∅ 〉 ,  〈 1o ,  2o 〉 ,  〈 ∅ ,  2o 〉 } ( ( 𝑍  ↾  dom  𝑈 ) ‘ 𝑝 ) ) ) | 
						
							| 68 |  | noreson | ⊢ ( ( 𝑍  ∈   No   ∧  dom  𝑈  ∈  On )  →  ( 𝑍  ↾  dom  𝑈 )  ∈   No  ) | 
						
							| 69 | 31 46 68 | syl2anc | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  ∈  dom  𝑈 )  →  ( 𝑍  ↾  dom  𝑈 )  ∈   No  ) | 
						
							| 70 |  | sltval | ⊢ ( ( 𝑈  ∈   No   ∧  ( 𝑍  ↾  dom  𝑈 )  ∈   No  )  →  ( 𝑈  <s  ( 𝑍  ↾  dom  𝑈 )  ↔  ∃ 𝑝  ∈  On ( ∀ 𝑞  ∈  𝑝 ( 𝑈 ‘ 𝑞 )  =  ( ( 𝑍  ↾  dom  𝑈 ) ‘ 𝑞 )  ∧  ( 𝑈 ‘ 𝑝 ) { 〈 1o ,  ∅ 〉 ,  〈 1o ,  2o 〉 ,  〈 ∅ ,  2o 〉 } ( ( 𝑍  ↾  dom  𝑈 ) ‘ 𝑝 ) ) ) ) | 
						
							| 71 | 30 69 70 | syl2anc | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  ∈  dom  𝑈 )  →  ( 𝑈  <s  ( 𝑍  ↾  dom  𝑈 )  ↔  ∃ 𝑝  ∈  On ( ∀ 𝑞  ∈  𝑝 ( 𝑈 ‘ 𝑞 )  =  ( ( 𝑍  ↾  dom  𝑈 ) ‘ 𝑞 )  ∧  ( 𝑈 ‘ 𝑝 ) { 〈 1o ,  ∅ 〉 ,  〈 1o ,  2o 〉 ,  〈 ∅ ,  2o 〉 } ( ( 𝑍  ↾  dom  𝑈 ) ‘ 𝑝 ) ) ) ) | 
						
							| 72 | 67 71 | mpbird | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  ∈  dom  𝑈 )  →  𝑈  <s  ( 𝑍  ↾  dom  𝑈 ) ) | 
						
							| 73 |  | df-res | ⊢ ( { 〈 dom  𝑈 ,  2o 〉 }  ↾  dom  𝑈 )  =  ( { 〈 dom  𝑈 ,  2o 〉 }  ∩  ( dom  𝑈  ×  V ) ) | 
						
							| 74 |  | 2on | ⊢ 2o  ∈  On | 
						
							| 75 |  | xpsng | ⊢ ( ( dom  𝑈  ∈  On  ∧  2o  ∈  On )  →  ( { dom  𝑈 }  ×  { 2o } )  =  { 〈 dom  𝑈 ,  2o 〉 } ) | 
						
							| 76 | 46 74 75 | sylancl | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  ∈  dom  𝑈 )  →  ( { dom  𝑈 }  ×  { 2o } )  =  { 〈 dom  𝑈 ,  2o 〉 } ) | 
						
							| 77 | 76 | ineq1d | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  ∈  dom  𝑈 )  →  ( ( { dom  𝑈 }  ×  { 2o } )  ∩  ( dom  𝑈  ×  V ) )  =  ( { 〈 dom  𝑈 ,  2o 〉 }  ∩  ( dom  𝑈  ×  V ) ) ) | 
						
							| 78 |  | incom | ⊢ ( { dom  𝑈 }  ∩  dom  𝑈 )  =  ( dom  𝑈  ∩  { dom  𝑈 } ) | 
						
							| 79 |  | nodmord | ⊢ ( 𝑈  ∈   No   →  Ord  dom  𝑈 ) | 
						
							| 80 |  | ordirr | ⊢ ( Ord  dom  𝑈  →  ¬  dom  𝑈  ∈  dom  𝑈 ) | 
						
							| 81 | 30 79 80 | 3syl | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  ∈  dom  𝑈 )  →  ¬  dom  𝑈  ∈  dom  𝑈 ) | 
						
							| 82 |  | disjsn | ⊢ ( ( dom  𝑈  ∩  { dom  𝑈 } )  =  ∅  ↔  ¬  dom  𝑈  ∈  dom  𝑈 ) | 
						
							| 83 | 81 82 | sylibr | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  ∈  dom  𝑈 )  →  ( dom  𝑈  ∩  { dom  𝑈 } )  =  ∅ ) | 
						
							| 84 | 78 83 | eqtrid | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  ∈  dom  𝑈 )  →  ( { dom  𝑈 }  ∩  dom  𝑈 )  =  ∅ ) | 
						
							| 85 |  | xpdisj1 | ⊢ ( ( { dom  𝑈 }  ∩  dom  𝑈 )  =  ∅  →  ( ( { dom  𝑈 }  ×  { 2o } )  ∩  ( dom  𝑈  ×  V ) )  =  ∅ ) | 
						
							| 86 | 84 85 | syl | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  ∈  dom  𝑈 )  →  ( ( { dom  𝑈 }  ×  { 2o } )  ∩  ( dom  𝑈  ×  V ) )  =  ∅ ) | 
						
							| 87 | 77 86 | eqtr3d | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  ∈  dom  𝑈 )  →  ( { 〈 dom  𝑈 ,  2o 〉 }  ∩  ( dom  𝑈  ×  V ) )  =  ∅ ) | 
						
							| 88 | 73 87 | eqtrid | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  ∈  dom  𝑈 )  →  ( { 〈 dom  𝑈 ,  2o 〉 }  ↾  dom  𝑈 )  =  ∅ ) | 
						
							| 89 | 88 | uneq2d | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  ∈  dom  𝑈 )  →  ( ( 𝑈  ↾  dom  𝑈 )  ∪  ( { 〈 dom  𝑈 ,  2o 〉 }  ↾  dom  𝑈 ) )  =  ( ( 𝑈  ↾  dom  𝑈 )  ∪  ∅ ) ) | 
						
							| 90 |  | resundir | ⊢ ( ( 𝑈  ∪  { 〈 dom  𝑈 ,  2o 〉 } )  ↾  dom  𝑈 )  =  ( ( 𝑈  ↾  dom  𝑈 )  ∪  ( { 〈 dom  𝑈 ,  2o 〉 }  ↾  dom  𝑈 ) ) | 
						
							| 91 |  | un0 | ⊢ ( ( 𝑈  ↾  dom  𝑈 )  ∪  ∅ )  =  ( 𝑈  ↾  dom  𝑈 ) | 
						
							| 92 | 91 | eqcomi | ⊢ ( 𝑈  ↾  dom  𝑈 )  =  ( ( 𝑈  ↾  dom  𝑈 )  ∪  ∅ ) | 
						
							| 93 | 89 90 92 | 3eqtr4g | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  ∈  dom  𝑈 )  →  ( ( 𝑈  ∪  { 〈 dom  𝑈 ,  2o 〉 } )  ↾  dom  𝑈 )  =  ( 𝑈  ↾  dom  𝑈 ) ) | 
						
							| 94 |  | nofun | ⊢ ( 𝑈  ∈   No   →  Fun  𝑈 ) | 
						
							| 95 |  | funrel | ⊢ ( Fun  𝑈  →  Rel  𝑈 ) | 
						
							| 96 |  | resdm | ⊢ ( Rel  𝑈  →  ( 𝑈  ↾  dom  𝑈 )  =  𝑈 ) | 
						
							| 97 | 30 94 95 96 | 4syl | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  ∈  dom  𝑈 )  →  ( 𝑈  ↾  dom  𝑈 )  =  𝑈 ) | 
						
							| 98 | 93 97 | eqtrd | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  ∈  dom  𝑈 )  →  ( ( 𝑈  ∪  { 〈 dom  𝑈 ,  2o 〉 } )  ↾  dom  𝑈 )  =  𝑈 ) | 
						
							| 99 |  | sssucid | ⊢ dom  𝑈  ⊆  suc  dom  𝑈 | 
						
							| 100 |  | resabs1 | ⊢ ( dom  𝑈  ⊆  suc  dom  𝑈  →  ( ( 𝑍  ↾  suc  dom  𝑈 )  ↾  dom  𝑈 )  =  ( 𝑍  ↾  dom  𝑈 ) ) | 
						
							| 101 | 99 100 | mp1i | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  ∈  dom  𝑈 )  →  ( ( 𝑍  ↾  suc  dom  𝑈 )  ↾  dom  𝑈 )  =  ( 𝑍  ↾  dom  𝑈 ) ) | 
						
							| 102 | 72 98 101 | 3brtr4d | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  ∈  dom  𝑈 )  →  ( ( 𝑈  ∪  { 〈 dom  𝑈 ,  2o 〉 } )  ↾  dom  𝑈 )  <s  ( ( 𝑍  ↾  suc  dom  𝑈 )  ↾  dom  𝑈 ) ) | 
						
							| 103 | 74 | elexi | ⊢ 2o  ∈  V | 
						
							| 104 | 103 | prid2 | ⊢ 2o  ∈  { 1o ,  2o } | 
						
							| 105 | 104 | noextend | ⊢ ( 𝑈  ∈   No   →  ( 𝑈  ∪  { 〈 dom  𝑈 ,  2o 〉 } )  ∈   No  ) | 
						
							| 106 | 8 105 | syl | ⊢ ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  →  ( 𝑈  ∪  { 〈 dom  𝑈 ,  2o 〉 } )  ∈   No  ) | 
						
							| 107 | 106 | adantr | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  ∈  dom  𝑈 )  →  ( 𝑈  ∪  { 〈 dom  𝑈 ,  2o 〉 } )  ∈   No  ) | 
						
							| 108 |  | onsucb | ⊢ ( dom  𝑈  ∈  On  ↔  suc  dom  𝑈  ∈  On ) | 
						
							| 109 | 27 108 | sylib | ⊢ ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  →  suc  dom  𝑈  ∈  On ) | 
						
							| 110 |  | noreson | ⊢ ( ( 𝑍  ∈   No   ∧  suc  dom  𝑈  ∈  On )  →  ( 𝑍  ↾  suc  dom  𝑈 )  ∈   No  ) | 
						
							| 111 | 9 109 110 | syl2anc | ⊢ ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  →  ( 𝑍  ↾  suc  dom  𝑈 )  ∈   No  ) | 
						
							| 112 | 111 | adantr | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  ∈  dom  𝑈 )  →  ( 𝑍  ↾  suc  dom  𝑈 )  ∈   No  ) | 
						
							| 113 |  | sltres | ⊢ ( ( ( 𝑈  ∪  { 〈 dom  𝑈 ,  2o 〉 } )  ∈   No   ∧  ( 𝑍  ↾  suc  dom  𝑈 )  ∈   No   ∧  dom  𝑈  ∈  On )  →  ( ( ( 𝑈  ∪  { 〈 dom  𝑈 ,  2o 〉 } )  ↾  dom  𝑈 )  <s  ( ( 𝑍  ↾  suc  dom  𝑈 )  ↾  dom  𝑈 )  →  ( 𝑈  ∪  { 〈 dom  𝑈 ,  2o 〉 } )  <s  ( 𝑍  ↾  suc  dom  𝑈 ) ) ) | 
						
							| 114 | 107 112 46 113 | syl3anc | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  ∈  dom  𝑈 )  →  ( ( ( 𝑈  ∪  { 〈 dom  𝑈 ,  2o 〉 } )  ↾  dom  𝑈 )  <s  ( ( 𝑍  ↾  suc  dom  𝑈 )  ↾  dom  𝑈 )  →  ( 𝑈  ∪  { 〈 dom  𝑈 ,  2o 〉 } )  <s  ( 𝑍  ↾  suc  dom  𝑈 ) ) ) | 
						
							| 115 | 102 114 | mpd | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  ∈  dom  𝑈 )  →  ( 𝑈  ∪  { 〈 dom  𝑈 ,  2o 〉 } )  <s  ( 𝑍  ↾  suc  dom  𝑈 ) ) | 
						
							| 116 |  | soasym | ⊢ ( (  <s   Or   No   ∧  ( ( 𝑈  ∪  { 〈 dom  𝑈 ,  2o 〉 } )  ∈   No   ∧  ( 𝑍  ↾  suc  dom  𝑈 )  ∈   No  ) )  →  ( ( 𝑈  ∪  { 〈 dom  𝑈 ,  2o 〉 } )  <s  ( 𝑍  ↾  suc  dom  𝑈 )  →  ¬  ( 𝑍  ↾  suc  dom  𝑈 )  <s  ( 𝑈  ∪  { 〈 dom  𝑈 ,  2o 〉 } ) ) ) | 
						
							| 117 | 12 116 | mpan | ⊢ ( ( ( 𝑈  ∪  { 〈 dom  𝑈 ,  2o 〉 } )  ∈   No   ∧  ( 𝑍  ↾  suc  dom  𝑈 )  ∈   No  )  →  ( ( 𝑈  ∪  { 〈 dom  𝑈 ,  2o 〉 } )  <s  ( 𝑍  ↾  suc  dom  𝑈 )  →  ¬  ( 𝑍  ↾  suc  dom  𝑈 )  <s  ( 𝑈  ∪  { 〈 dom  𝑈 ,  2o 〉 } ) ) ) | 
						
							| 118 | 107 112 117 | syl2anc | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  ∈  dom  𝑈 )  →  ( ( 𝑈  ∪  { 〈 dom  𝑈 ,  2o 〉 } )  <s  ( 𝑍  ↾  suc  dom  𝑈 )  →  ¬  ( 𝑍  ↾  suc  dom  𝑈 )  <s  ( 𝑈  ∪  { 〈 dom  𝑈 ,  2o 〉 } ) ) ) | 
						
							| 119 | 115 118 | mpd | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  ∈  dom  𝑈 )  →  ¬  ( 𝑍  ↾  suc  dom  𝑈 )  <s  ( 𝑈  ∪  { 〈 dom  𝑈 ,  2o 〉 } ) ) | 
						
							| 120 |  | df-suc | ⊢ suc  dom  𝑈  =  ( dom  𝑈  ∪  { dom  𝑈 } ) | 
						
							| 121 | 120 | reseq2i | ⊢ ( 𝑍  ↾  suc  dom  𝑈 )  =  ( 𝑍  ↾  ( dom  𝑈  ∪  { dom  𝑈 } ) ) | 
						
							| 122 |  | resundi | ⊢ ( 𝑍  ↾  ( dom  𝑈  ∪  { dom  𝑈 } ) )  =  ( ( 𝑍  ↾  dom  𝑈 )  ∪  ( 𝑍  ↾  { dom  𝑈 } ) ) | 
						
							| 123 | 121 122 | eqtri | ⊢ ( 𝑍  ↾  suc  dom  𝑈 )  =  ( ( 𝑍  ↾  dom  𝑈 )  ∪  ( 𝑍  ↾  { dom  𝑈 } ) ) | 
						
							| 124 |  | dmres | ⊢ dom  ( 𝑍  ↾  dom  𝑈 )  =  ( dom  𝑈  ∩  dom  𝑍 ) | 
						
							| 125 |  | simpr | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  =  dom  𝑈 )  →  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  =  dom  𝑈 ) | 
						
							| 126 |  | necom | ⊢ ( ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 )  ↔  ( 𝑍 ‘ 𝑥 )  ≠  ( 𝑈 ‘ 𝑥 ) ) | 
						
							| 127 | 126 | rabbii | ⊢ { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  =  { 𝑥  ∈  On  ∣  ( 𝑍 ‘ 𝑥 )  ≠  ( 𝑈 ‘ 𝑥 ) } | 
						
							| 128 | 127 | inteqi | ⊢ ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  =  ∩  { 𝑥  ∈  On  ∣  ( 𝑍 ‘ 𝑥 )  ≠  ( 𝑈 ‘ 𝑥 ) } | 
						
							| 129 | 9 | adantr | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  =  dom  𝑈 )  →  𝑍  ∈   No  ) | 
						
							| 130 | 8 | adantr | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  =  dom  𝑈 )  →  𝑈  ∈   No  ) | 
						
							| 131 | 21 | adantr | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  =  dom  𝑈 )  →  𝑈  ≠  𝑍 ) | 
						
							| 132 | 131 | necomd | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  =  dom  𝑈 )  →  𝑍  ≠  𝑈 ) | 
						
							| 133 |  | nosepssdm | ⊢ ( ( 𝑍  ∈   No   ∧  𝑈  ∈   No   ∧  𝑍  ≠  𝑈 )  →  ∩  { 𝑥  ∈  On  ∣  ( 𝑍 ‘ 𝑥 )  ≠  ( 𝑈 ‘ 𝑥 ) }  ⊆  dom  𝑍 ) | 
						
							| 134 | 129 130 132 133 | syl3anc | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  =  dom  𝑈 )  →  ∩  { 𝑥  ∈  On  ∣  ( 𝑍 ‘ 𝑥 )  ≠  ( 𝑈 ‘ 𝑥 ) }  ⊆  dom  𝑍 ) | 
						
							| 135 | 128 134 | eqsstrid | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  =  dom  𝑈 )  →  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  ⊆  dom  𝑍 ) | 
						
							| 136 | 125 135 | eqsstrrd | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  =  dom  𝑈 )  →  dom  𝑈  ⊆  dom  𝑍 ) | 
						
							| 137 |  | dfss2 | ⊢ ( dom  𝑈  ⊆  dom  𝑍  ↔  ( dom  𝑈  ∩  dom  𝑍 )  =  dom  𝑈 ) | 
						
							| 138 | 136 137 | sylib | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  =  dom  𝑈 )  →  ( dom  𝑈  ∩  dom  𝑍 )  =  dom  𝑈 ) | 
						
							| 139 | 124 138 | eqtrid | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  =  dom  𝑈 )  →  dom  ( 𝑍  ↾  dom  𝑈 )  =  dom  𝑈 ) | 
						
							| 140 | 139 | eleq2d | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  =  dom  𝑈 )  →  ( 𝑞  ∈  dom  ( 𝑍  ↾  dom  𝑈 )  ↔  𝑞  ∈  dom  𝑈 ) ) | 
						
							| 141 |  | simpr | ⊢ ( ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  =  dom  𝑈 )  ∧  𝑞  ∈  dom  𝑈 )  →  𝑞  ∈  dom  𝑈 ) | 
						
							| 142 | 141 | fvresd | ⊢ ( ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  =  dom  𝑈 )  ∧  𝑞  ∈  dom  𝑈 )  →  ( ( 𝑍  ↾  dom  𝑈 ) ‘ 𝑞 )  =  ( 𝑍 ‘ 𝑞 ) ) | 
						
							| 143 | 130 26 | syl | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  =  dom  𝑈 )  →  dom  𝑈  ∈  On ) | 
						
							| 144 |  | onelon | ⊢ ( ( dom  𝑈  ∈  On  ∧  𝑞  ∈  dom  𝑈 )  →  𝑞  ∈  On ) | 
						
							| 145 | 143 144 | sylan | ⊢ ( ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  =  dom  𝑈 )  ∧  𝑞  ∈  dom  𝑈 )  →  𝑞  ∈  On ) | 
						
							| 146 | 125 | eleq2d | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  =  dom  𝑈 )  →  ( 𝑞  ∈  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  ↔  𝑞  ∈  dom  𝑈 ) ) | 
						
							| 147 | 146 | biimpar | ⊢ ( ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  =  dom  𝑈 )  ∧  𝑞  ∈  dom  𝑈 )  →  𝑞  ∈  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) } ) | 
						
							| 148 | 145 147 40 | sylc | ⊢ ( ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  =  dom  𝑈 )  ∧  𝑞  ∈  dom  𝑈 )  →  ¬  ( 𝑈 ‘ 𝑞 )  ≠  ( 𝑍 ‘ 𝑞 ) ) | 
						
							| 149 |  | nesym | ⊢ ( ( 𝑈 ‘ 𝑞 )  ≠  ( 𝑍 ‘ 𝑞 )  ↔  ¬  ( 𝑍 ‘ 𝑞 )  =  ( 𝑈 ‘ 𝑞 ) ) | 
						
							| 150 | 149 | con2bii | ⊢ ( ( 𝑍 ‘ 𝑞 )  =  ( 𝑈 ‘ 𝑞 )  ↔  ¬  ( 𝑈 ‘ 𝑞 )  ≠  ( 𝑍 ‘ 𝑞 ) ) | 
						
							| 151 | 148 150 | sylibr | ⊢ ( ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  =  dom  𝑈 )  ∧  𝑞  ∈  dom  𝑈 )  →  ( 𝑍 ‘ 𝑞 )  =  ( 𝑈 ‘ 𝑞 ) ) | 
						
							| 152 | 142 151 | eqtrd | ⊢ ( ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  =  dom  𝑈 )  ∧  𝑞  ∈  dom  𝑈 )  →  ( ( 𝑍  ↾  dom  𝑈 ) ‘ 𝑞 )  =  ( 𝑈 ‘ 𝑞 ) ) | 
						
							| 153 | 152 | ex | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  =  dom  𝑈 )  →  ( 𝑞  ∈  dom  𝑈  →  ( ( 𝑍  ↾  dom  𝑈 ) ‘ 𝑞 )  =  ( 𝑈 ‘ 𝑞 ) ) ) | 
						
							| 154 | 140 153 | sylbid | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  =  dom  𝑈 )  →  ( 𝑞  ∈  dom  ( 𝑍  ↾  dom  𝑈 )  →  ( ( 𝑍  ↾  dom  𝑈 ) ‘ 𝑞 )  =  ( 𝑈 ‘ 𝑞 ) ) ) | 
						
							| 155 | 154 | ralrimiv | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  =  dom  𝑈 )  →  ∀ 𝑞  ∈  dom  ( 𝑍  ↾  dom  𝑈 ) ( ( 𝑍  ↾  dom  𝑈 ) ‘ 𝑞 )  =  ( 𝑈 ‘ 𝑞 ) ) | 
						
							| 156 |  | nofun | ⊢ ( 𝑍  ∈   No   →  Fun  𝑍 ) | 
						
							| 157 |  | funres | ⊢ ( Fun  𝑍  →  Fun  ( 𝑍  ↾  dom  𝑈 ) ) | 
						
							| 158 | 129 156 157 | 3syl | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  =  dom  𝑈 )  →  Fun  ( 𝑍  ↾  dom  𝑈 ) ) | 
						
							| 159 | 130 94 | syl | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  =  dom  𝑈 )  →  Fun  𝑈 ) | 
						
							| 160 |  | eqfunfv | ⊢ ( ( Fun  ( 𝑍  ↾  dom  𝑈 )  ∧  Fun  𝑈 )  →  ( ( 𝑍  ↾  dom  𝑈 )  =  𝑈  ↔  ( dom  ( 𝑍  ↾  dom  𝑈 )  =  dom  𝑈  ∧  ∀ 𝑞  ∈  dom  ( 𝑍  ↾  dom  𝑈 ) ( ( 𝑍  ↾  dom  𝑈 ) ‘ 𝑞 )  =  ( 𝑈 ‘ 𝑞 ) ) ) ) | 
						
							| 161 | 158 159 160 | syl2anc | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  =  dom  𝑈 )  →  ( ( 𝑍  ↾  dom  𝑈 )  =  𝑈  ↔  ( dom  ( 𝑍  ↾  dom  𝑈 )  =  dom  𝑈  ∧  ∀ 𝑞  ∈  dom  ( 𝑍  ↾  dom  𝑈 ) ( ( 𝑍  ↾  dom  𝑈 ) ‘ 𝑞 )  =  ( 𝑈 ‘ 𝑞 ) ) ) ) | 
						
							| 162 | 139 155 161 | mpbir2and | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  =  dom  𝑈 )  →  ( 𝑍  ↾  dom  𝑈 )  =  𝑈 ) | 
						
							| 163 | 129 156 | syl | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  =  dom  𝑈 )  →  Fun  𝑍 ) | 
						
							| 164 |  | funfn | ⊢ ( Fun  𝑍  ↔  𝑍  Fn  dom  𝑍 ) | 
						
							| 165 | 163 164 | sylib | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  =  dom  𝑈 )  →  𝑍  Fn  dom  𝑍 ) | 
						
							| 166 |  | 1oex | ⊢ 1o  ∈  V | 
						
							| 167 | 166 | prid1 | ⊢ 1o  ∈  { 1o ,  2o } | 
						
							| 168 | 167 | nosgnn0i | ⊢ ∅  ≠  1o | 
						
							| 169 |  | ndmfv | ⊢ ( ¬  dom  𝑈  ∈  dom  𝑈  →  ( 𝑈 ‘ dom  𝑈 )  =  ∅ ) | 
						
							| 170 | 130 79 80 169 | 4syl | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  =  dom  𝑈 )  →  ( 𝑈 ‘ dom  𝑈 )  =  ∅ ) | 
						
							| 171 | 170 | neeq1d | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  =  dom  𝑈 )  →  ( ( 𝑈 ‘ dom  𝑈 )  ≠  1o  ↔  ∅  ≠  1o ) ) | 
						
							| 172 | 168 171 | mpbiri | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  =  dom  𝑈 )  →  ( 𝑈 ‘ dom  𝑈 )  ≠  1o ) | 
						
							| 173 | 172 | neneqd | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  =  dom  𝑈 )  →  ¬  ( 𝑈 ‘ dom  𝑈 )  =  1o ) | 
						
							| 174 | 173 | intnanrd | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  =  dom  𝑈 )  →  ¬  ( ( 𝑈 ‘ dom  𝑈 )  =  1o  ∧  ( 𝑍 ‘ dom  𝑈 )  =  ∅ ) ) | 
						
							| 175 | 173 | intnanrd | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  =  dom  𝑈 )  →  ¬  ( ( 𝑈 ‘ dom  𝑈 )  =  1o  ∧  ( 𝑍 ‘ dom  𝑈 )  =  2o ) ) | 
						
							| 176 |  | simplr | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  =  dom  𝑈 )  →  𝑈  <s  𝑍 ) | 
						
							| 177 | 130 129 55 | syl2anc | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  =  dom  𝑈 )  →  ( 𝑈  <s  𝑍  ↔  ( 𝑈 ‘ ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) } ) { 〈 1o ,  ∅ 〉 ,  〈 1o ,  2o 〉 ,  〈 ∅ ,  2o 〉 } ( 𝑍 ‘ ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) } ) ) ) | 
						
							| 178 | 176 177 | mpbid | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  =  dom  𝑈 )  →  ( 𝑈 ‘ ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) } ) { 〈 1o ,  ∅ 〉 ,  〈 1o ,  2o 〉 ,  〈 ∅ ,  2o 〉 } ( 𝑍 ‘ ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) } ) ) | 
						
							| 179 |  | fveq2 | ⊢ ( ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  =  dom  𝑈  →  ( 𝑈 ‘ ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) } )  =  ( 𝑈 ‘ dom  𝑈 ) ) | 
						
							| 180 | 179 | adantl | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  =  dom  𝑈 )  →  ( 𝑈 ‘ ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) } )  =  ( 𝑈 ‘ dom  𝑈 ) ) | 
						
							| 181 |  | fveq2 | ⊢ ( ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  =  dom  𝑈  →  ( 𝑍 ‘ ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) } )  =  ( 𝑍 ‘ dom  𝑈 ) ) | 
						
							| 182 | 181 | adantl | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  =  dom  𝑈 )  →  ( 𝑍 ‘ ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) } )  =  ( 𝑍 ‘ dom  𝑈 ) ) | 
						
							| 183 | 178 180 182 | 3brtr3d | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  =  dom  𝑈 )  →  ( 𝑈 ‘ dom  𝑈 ) { 〈 1o ,  ∅ 〉 ,  〈 1o ,  2o 〉 ,  〈 ∅ ,  2o 〉 } ( 𝑍 ‘ dom  𝑈 ) ) | 
						
							| 184 |  | fvex | ⊢ ( 𝑈 ‘ dom  𝑈 )  ∈  V | 
						
							| 185 |  | fvex | ⊢ ( 𝑍 ‘ dom  𝑈 )  ∈  V | 
						
							| 186 | 184 185 | brtp | ⊢ ( ( 𝑈 ‘ dom  𝑈 ) { 〈 1o ,  ∅ 〉 ,  〈 1o ,  2o 〉 ,  〈 ∅ ,  2o 〉 } ( 𝑍 ‘ dom  𝑈 )  ↔  ( ( ( 𝑈 ‘ dom  𝑈 )  =  1o  ∧  ( 𝑍 ‘ dom  𝑈 )  =  ∅ )  ∨  ( ( 𝑈 ‘ dom  𝑈 )  =  1o  ∧  ( 𝑍 ‘ dom  𝑈 )  =  2o )  ∨  ( ( 𝑈 ‘ dom  𝑈 )  =  ∅  ∧  ( 𝑍 ‘ dom  𝑈 )  =  2o ) ) ) | 
						
							| 187 |  | 3orrot | ⊢ ( ( ( ( 𝑈 ‘ dom  𝑈 )  =  1o  ∧  ( 𝑍 ‘ dom  𝑈 )  =  ∅ )  ∨  ( ( 𝑈 ‘ dom  𝑈 )  =  1o  ∧  ( 𝑍 ‘ dom  𝑈 )  =  2o )  ∨  ( ( 𝑈 ‘ dom  𝑈 )  =  ∅  ∧  ( 𝑍 ‘ dom  𝑈 )  =  2o ) )  ↔  ( ( ( 𝑈 ‘ dom  𝑈 )  =  1o  ∧  ( 𝑍 ‘ dom  𝑈 )  =  2o )  ∨  ( ( 𝑈 ‘ dom  𝑈 )  =  ∅  ∧  ( 𝑍 ‘ dom  𝑈 )  =  2o )  ∨  ( ( 𝑈 ‘ dom  𝑈 )  =  1o  ∧  ( 𝑍 ‘ dom  𝑈 )  =  ∅ ) ) ) | 
						
							| 188 |  | 3orrot | ⊢ ( ( ( ( 𝑈 ‘ dom  𝑈 )  =  1o  ∧  ( 𝑍 ‘ dom  𝑈 )  =  2o )  ∨  ( ( 𝑈 ‘ dom  𝑈 )  =  ∅  ∧  ( 𝑍 ‘ dom  𝑈 )  =  2o )  ∨  ( ( 𝑈 ‘ dom  𝑈 )  =  1o  ∧  ( 𝑍 ‘ dom  𝑈 )  =  ∅ ) )  ↔  ( ( ( 𝑈 ‘ dom  𝑈 )  =  ∅  ∧  ( 𝑍 ‘ dom  𝑈 )  =  2o )  ∨  ( ( 𝑈 ‘ dom  𝑈 )  =  1o  ∧  ( 𝑍 ‘ dom  𝑈 )  =  ∅ )  ∨  ( ( 𝑈 ‘ dom  𝑈 )  =  1o  ∧  ( 𝑍 ‘ dom  𝑈 )  =  2o ) ) ) | 
						
							| 189 | 186 187 188 | 3bitri | ⊢ ( ( 𝑈 ‘ dom  𝑈 ) { 〈 1o ,  ∅ 〉 ,  〈 1o ,  2o 〉 ,  〈 ∅ ,  2o 〉 } ( 𝑍 ‘ dom  𝑈 )  ↔  ( ( ( 𝑈 ‘ dom  𝑈 )  =  ∅  ∧  ( 𝑍 ‘ dom  𝑈 )  =  2o )  ∨  ( ( 𝑈 ‘ dom  𝑈 )  =  1o  ∧  ( 𝑍 ‘ dom  𝑈 )  =  ∅ )  ∨  ( ( 𝑈 ‘ dom  𝑈 )  =  1o  ∧  ( 𝑍 ‘ dom  𝑈 )  =  2o ) ) ) | 
						
							| 190 | 183 189 | sylib | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  =  dom  𝑈 )  →  ( ( ( 𝑈 ‘ dom  𝑈 )  =  ∅  ∧  ( 𝑍 ‘ dom  𝑈 )  =  2o )  ∨  ( ( 𝑈 ‘ dom  𝑈 )  =  1o  ∧  ( 𝑍 ‘ dom  𝑈 )  =  ∅ )  ∨  ( ( 𝑈 ‘ dom  𝑈 )  =  1o  ∧  ( 𝑍 ‘ dom  𝑈 )  =  2o ) ) ) | 
						
							| 191 | 174 175 190 | ecase23d | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  =  dom  𝑈 )  →  ( ( 𝑈 ‘ dom  𝑈 )  =  ∅  ∧  ( 𝑍 ‘ dom  𝑈 )  =  2o ) ) | 
						
							| 192 | 191 | simprd | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  =  dom  𝑈 )  →  ( 𝑍 ‘ dom  𝑈 )  =  2o ) | 
						
							| 193 |  | ndmfv | ⊢ ( ¬  dom  𝑈  ∈  dom  𝑍  →  ( 𝑍 ‘ dom  𝑈 )  =  ∅ ) | 
						
							| 194 | 104 | nosgnn0i | ⊢ ∅  ≠  2o | 
						
							| 195 |  | neeq1 | ⊢ ( ( 𝑍 ‘ dom  𝑈 )  =  ∅  →  ( ( 𝑍 ‘ dom  𝑈 )  ≠  2o  ↔  ∅  ≠  2o ) ) | 
						
							| 196 | 194 195 | mpbiri | ⊢ ( ( 𝑍 ‘ dom  𝑈 )  =  ∅  →  ( 𝑍 ‘ dom  𝑈 )  ≠  2o ) | 
						
							| 197 | 196 | neneqd | ⊢ ( ( 𝑍 ‘ dom  𝑈 )  =  ∅  →  ¬  ( 𝑍 ‘ dom  𝑈 )  =  2o ) | 
						
							| 198 | 193 197 | syl | ⊢ ( ¬  dom  𝑈  ∈  dom  𝑍  →  ¬  ( 𝑍 ‘ dom  𝑈 )  =  2o ) | 
						
							| 199 | 198 | con4i | ⊢ ( ( 𝑍 ‘ dom  𝑈 )  =  2o  →  dom  𝑈  ∈  dom  𝑍 ) | 
						
							| 200 | 192 199 | syl | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  =  dom  𝑈 )  →  dom  𝑈  ∈  dom  𝑍 ) | 
						
							| 201 |  | fnressn | ⊢ ( ( 𝑍  Fn  dom  𝑍  ∧  dom  𝑈  ∈  dom  𝑍 )  →  ( 𝑍  ↾  { dom  𝑈 } )  =  { 〈 dom  𝑈 ,  ( 𝑍 ‘ dom  𝑈 ) 〉 } ) | 
						
							| 202 | 165 200 201 | syl2anc | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  =  dom  𝑈 )  →  ( 𝑍  ↾  { dom  𝑈 } )  =  { 〈 dom  𝑈 ,  ( 𝑍 ‘ dom  𝑈 ) 〉 } ) | 
						
							| 203 | 192 | opeq2d | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  =  dom  𝑈 )  →  〈 dom  𝑈 ,  ( 𝑍 ‘ dom  𝑈 ) 〉  =  〈 dom  𝑈 ,  2o 〉 ) | 
						
							| 204 | 203 | sneqd | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  =  dom  𝑈 )  →  { 〈 dom  𝑈 ,  ( 𝑍 ‘ dom  𝑈 ) 〉 }  =  { 〈 dom  𝑈 ,  2o 〉 } ) | 
						
							| 205 | 202 204 | eqtrd | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  =  dom  𝑈 )  →  ( 𝑍  ↾  { dom  𝑈 } )  =  { 〈 dom  𝑈 ,  2o 〉 } ) | 
						
							| 206 | 162 205 | uneq12d | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  =  dom  𝑈 )  →  ( ( 𝑍  ↾  dom  𝑈 )  ∪  ( 𝑍  ↾  { dom  𝑈 } ) )  =  ( 𝑈  ∪  { 〈 dom  𝑈 ,  2o 〉 } ) ) | 
						
							| 207 | 123 206 | eqtrid | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  =  dom  𝑈 )  →  ( 𝑍  ↾  suc  dom  𝑈 )  =  ( 𝑈  ∪  { 〈 dom  𝑈 ,  2o 〉 } ) ) | 
						
							| 208 |  | sonr | ⊢ ( (  <s   Or   No   ∧  ( 𝑈  ∪  { 〈 dom  𝑈 ,  2o 〉 } )  ∈   No  )  →  ¬  ( 𝑈  ∪  { 〈 dom  𝑈 ,  2o 〉 } )  <s  ( 𝑈  ∪  { 〈 dom  𝑈 ,  2o 〉 } ) ) | 
						
							| 209 | 12 208 | mpan | ⊢ ( ( 𝑈  ∪  { 〈 dom  𝑈 ,  2o 〉 } )  ∈   No   →  ¬  ( 𝑈  ∪  { 〈 dom  𝑈 ,  2o 〉 } )  <s  ( 𝑈  ∪  { 〈 dom  𝑈 ,  2o 〉 } ) ) | 
						
							| 210 | 130 105 209 | 3syl | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  =  dom  𝑈 )  →  ¬  ( 𝑈  ∪  { 〈 dom  𝑈 ,  2o 〉 } )  <s  ( 𝑈  ∪  { 〈 dom  𝑈 ,  2o 〉 } ) ) | 
						
							| 211 | 207 210 | eqnbrtrd | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  =  dom  𝑈 )  →  ¬  ( 𝑍  ↾  suc  dom  𝑈 )  <s  ( 𝑈  ∪  { 〈 dom  𝑈 ,  2o 〉 } ) ) | 
						
							| 212 | 119 211 | jaodan | ⊢ ( ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  ∧  ( ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  ∈  dom  𝑈  ∨  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  =  dom  𝑈 ) )  →  ¬  ( 𝑍  ↾  suc  dom  𝑈 )  <s  ( 𝑈  ∪  { 〈 dom  𝑈 ,  2o 〉 } ) ) | 
						
							| 213 | 212 | ex | ⊢ ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  →  ( ( ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  ∈  dom  𝑈  ∨  ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  =  dom  𝑈 )  →  ¬  ( 𝑍  ↾  suc  dom  𝑈 )  <s  ( 𝑈  ∪  { 〈 dom  𝑈 ,  2o 〉 } ) ) ) | 
						
							| 214 | 29 213 | sylbid | ⊢ ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  →  ( ∩  { 𝑥  ∈  On  ∣  ( 𝑈 ‘ 𝑥 )  ≠  ( 𝑍 ‘ 𝑥 ) }  ⊆  dom  𝑈  →  ¬  ( 𝑍  ↾  suc  dom  𝑈 )  <s  ( 𝑈  ∪  { 〈 dom  𝑈 ,  2o 〉 } ) ) ) | 
						
							| 215 | 23 214 | mpd | ⊢ ( ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  ∧  𝑈  <s  𝑍 )  →  ¬  ( 𝑍  ↾  suc  dom  𝑈 )  <s  ( 𝑈  ∪  { 〈 dom  𝑈 ,  2o 〉 } ) ) | 
						
							| 216 | 5 215 | mpdan | ⊢ ( ( ( 𝑈  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ¬  𝑈  <s  𝑦 )  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V  ∧  𝑍  ∈   No  )  ∧  ∀ 𝑎  ∈  𝐴 𝑎  <s  𝑍 )  →  ¬  ( 𝑍  ↾  suc  dom  𝑈 )  <s  ( 𝑈  ∪  { 〈 dom  𝑈 ,  2o 〉 } ) ) |