Metamath Proof Explorer


Theorem nosupbnd1

Description: Bounding law from below for the surreal supremum. Proposition 4.2 of Lipparini p. 6. (Contributed by Scott Fenton, 6-Dec-2021)

Ref Expression
Hypothesis nosupbnd1.1 𝑆 = if ( ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 , ( ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { ⟨ dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) , 2o ⟩ } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) ) ) )
Assertion nosupbnd1 ( ( 𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴 ) → ( 𝑈 ↾ dom 𝑆 ) <s 𝑆 )

Proof

Step Hyp Ref Expression
1 nosupbnd1.1 𝑆 = if ( ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 , ( ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { ⟨ dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) , 2o ⟩ } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) ) ) )
2 simpr3 ( ( ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴 ) ) → 𝑈𝐴 )
3 nfv 𝑥 ( 𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴 )
4 nfcv 𝑥 𝐴
5 nfriota1 𝑥 ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 )
6 nfcv 𝑥 <s
7 nfcv 𝑥 𝑦
8 5 6 7 nfbr 𝑥 ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) <s 𝑦
9 8 nfn 𝑥 ¬ ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) <s 𝑦
10 4 9 nfralw 𝑥𝑦𝐴 ¬ ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) <s 𝑦
11 3 10 nfim 𝑥 ( ( 𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴 ) → ∀ 𝑦𝐴 ¬ ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) <s 𝑦 )
12 simpl ( ( ( 𝑥𝐴 ∧ ∀ 𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∧ ( 𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴 ) ) → ( 𝑥𝐴 ∧ ∀ 𝑦𝐴 ¬ 𝑥 <s 𝑦 ) )
13 rspe ( ( 𝑥𝐴 ∧ ∀ 𝑦𝐴 ¬ 𝑥 <s 𝑦 ) → ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 )
14 13 adantr ( ( ( 𝑥𝐴 ∧ ∀ 𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∧ ( 𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴 ) ) → ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 )
15 nomaxmo ( 𝐴 No → ∃* 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 )
16 15 3ad2ant1 ( ( 𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴 ) → ∃* 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 )
17 16 adantl ( ( ( 𝑥𝐴 ∧ ∀ 𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∧ ( 𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴 ) ) → ∃* 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 )
18 reu5 ( ∃! 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ↔ ( ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ∃* 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) )
19 14 17 18 sylanbrc ( ( ( 𝑥𝐴 ∧ ∀ 𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∧ ( 𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴 ) ) → ∃! 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 )
20 riota1 ( ∃! 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → ( ( 𝑥𝐴 ∧ ∀ 𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ↔ ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) = 𝑥 ) )
21 19 20 syl ( ( ( 𝑥𝐴 ∧ ∀ 𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∧ ( 𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴 ) ) → ( ( 𝑥𝐴 ∧ ∀ 𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ↔ ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) = 𝑥 ) )
22 12 21 mpbid ( ( ( 𝑥𝐴 ∧ ∀ 𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∧ ( 𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴 ) ) → ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) = 𝑥 )
23 simplr ( ( ( 𝑥𝐴 ∧ ∀ 𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∧ ( 𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴 ) ) → ∀ 𝑦𝐴 ¬ 𝑥 <s 𝑦 )
24 nfra1 𝑦𝑦𝐴 ¬ 𝑥 <s 𝑦
25 nfcv 𝑦 𝐴
26 24 25 nfriota 𝑦 ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 )
27 nfcv 𝑦 𝑥
28 26 27 nfeq 𝑦 ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) = 𝑥
29 breq1 ( ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) = 𝑥 → ( ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) <s 𝑦𝑥 <s 𝑦 ) )
30 29 notbid ( ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) = 𝑥 → ( ¬ ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) <s 𝑦 ↔ ¬ 𝑥 <s 𝑦 ) )
31 28 30 ralbid ( ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) = 𝑥 → ( ∀ 𝑦𝐴 ¬ ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) <s 𝑦 ↔ ∀ 𝑦𝐴 ¬ 𝑥 <s 𝑦 ) )
32 31 biimprd ( ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) = 𝑥 → ( ∀ 𝑦𝐴 ¬ 𝑥 <s 𝑦 → ∀ 𝑦𝐴 ¬ ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) <s 𝑦 ) )
33 22 23 32 sylc ( ( ( 𝑥𝐴 ∧ ∀ 𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∧ ( 𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴 ) ) → ∀ 𝑦𝐴 ¬ ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) <s 𝑦 )
34 33 exp31 ( 𝑥𝐴 → ( ∀ 𝑦𝐴 ¬ 𝑥 <s 𝑦 → ( ( 𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴 ) → ∀ 𝑦𝐴 ¬ ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) <s 𝑦 ) ) )
35 11 34 rexlimi ( ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → ( ( 𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴 ) → ∀ 𝑦𝐴 ¬ ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) <s 𝑦 ) )
36 35 imp ( ( ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴 ) ) → ∀ 𝑦𝐴 ¬ ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) <s 𝑦 )
37 nfcv 𝑦 <s
38 nfcv 𝑦 𝑈
39 26 37 38 nfbr 𝑦 ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) <s 𝑈
40 39 nfn 𝑦 ¬ ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) <s 𝑈
41 breq2 ( 𝑦 = 𝑈 → ( ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) <s 𝑦 ↔ ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) <s 𝑈 ) )
42 41 notbid ( 𝑦 = 𝑈 → ( ¬ ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) <s 𝑦 ↔ ¬ ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) <s 𝑈 ) )
43 40 42 rspc ( 𝑈𝐴 → ( ∀ 𝑦𝐴 ¬ ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) <s 𝑦 → ¬ ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) <s 𝑈 ) )
44 2 36 43 sylc ( ( ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴 ) ) → ¬ ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) <s 𝑈 )
45 simpr1 ( ( ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴 ) ) → 𝐴 No )
46 simpl ( ( ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴 ) ) → ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 )
47 16 adantl ( ( ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴 ) ) → ∃* 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 )
48 46 47 18 sylanbrc ( ( ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴 ) ) → ∃! 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 )
49 riotacl ( ∃! 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∈ 𝐴 )
50 48 49 syl ( ( ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴 ) ) → ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∈ 𝐴 )
51 45 50 sseldd ( ( ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴 ) ) → ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∈ No )
52 nofun ( ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∈ No → Fun ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) )
53 funrel ( Fun ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) → Rel ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) )
54 51 52 53 3syl ( ( ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴 ) ) → Rel ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) )
55 sssucid dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ⊆ suc dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 )
56 relssres ( ( Rel ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∧ dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ⊆ suc dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ) → ( ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ↾ suc dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ) = ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) )
57 54 55 56 sylancl ( ( ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴 ) ) → ( ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ↾ suc dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ) = ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) )
58 57 breq1d ( ( ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴 ) ) → ( ( ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ↾ suc dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ) <s ( 𝑈 ↾ suc dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ) ↔ ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) <s ( 𝑈 ↾ suc dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ) ) )
59 45 2 sseldd ( ( ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴 ) ) → 𝑈 No )
60 nodmon ( ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∈ No → dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∈ On )
61 51 60 syl ( ( ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴 ) ) → dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∈ On )
62 sucelon ( dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∈ On ↔ suc dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∈ On )
63 61 62 sylib ( ( ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴 ) ) → suc dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∈ On )
64 sltres ( ( ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∈ No 𝑈 No ∧ suc dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∈ On ) → ( ( ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ↾ suc dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ) <s ( 𝑈 ↾ suc dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ) → ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) <s 𝑈 ) )
65 51 59 63 64 syl3anc ( ( ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴 ) ) → ( ( ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ↾ suc dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ) <s ( 𝑈 ↾ suc dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ) → ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) <s 𝑈 ) )
66 58 65 sylbird ( ( ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴 ) ) → ( ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) <s ( 𝑈 ↾ suc dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ) → ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) <s 𝑈 ) )
67 44 66 mtod ( ( ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴 ) ) → ¬ ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) <s ( 𝑈 ↾ suc dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ) )
68 noextendgt ( ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∈ No → ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) <s ( ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { ⟨ dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) , 2o ⟩ } ) )
69 51 68 syl ( ( ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴 ) ) → ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) <s ( ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { ⟨ dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) , 2o ⟩ } ) )
70 noreson ( ( 𝑈 No ∧ suc dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∈ On ) → ( 𝑈 ↾ suc dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ) ∈ No )
71 59 63 70 syl2anc ( ( ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴 ) ) → ( 𝑈 ↾ suc dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ) ∈ No )
72 2on 2o ∈ On
73 72 elexi 2o ∈ V
74 73 prid2 2o ∈ { 1o , 2o }
75 74 noextend ( ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∈ No → ( ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { ⟨ dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) , 2o ⟩ } ) ∈ No )
76 51 75 syl ( ( ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴 ) ) → ( ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { ⟨ dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) , 2o ⟩ } ) ∈ No )
77 sltso <s Or No
78 sotr2 ( ( <s Or No ∧ ( ( 𝑈 ↾ suc dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ) ∈ No ∧ ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∈ No ∧ ( ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { ⟨ dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) , 2o ⟩ } ) ∈ No ) ) → ( ( ¬ ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) <s ( 𝑈 ↾ suc dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ) ∧ ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) <s ( ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { ⟨ dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) , 2o ⟩ } ) ) → ( 𝑈 ↾ suc dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ) <s ( ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { ⟨ dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) , 2o ⟩ } ) ) )
79 77 78 mpan ( ( ( 𝑈 ↾ suc dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ) ∈ No ∧ ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∈ No ∧ ( ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { ⟨ dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) , 2o ⟩ } ) ∈ No ) → ( ( ¬ ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) <s ( 𝑈 ↾ suc dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ) ∧ ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) <s ( ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { ⟨ dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) , 2o ⟩ } ) ) → ( 𝑈 ↾ suc dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ) <s ( ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { ⟨ dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) , 2o ⟩ } ) ) )
80 71 51 76 79 syl3anc ( ( ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴 ) ) → ( ( ¬ ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) <s ( 𝑈 ↾ suc dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ) ∧ ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) <s ( ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { ⟨ dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) , 2o ⟩ } ) ) → ( 𝑈 ↾ suc dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ) <s ( ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { ⟨ dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) , 2o ⟩ } ) ) )
81 67 69 80 mp2and ( ( ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴 ) ) → ( 𝑈 ↾ suc dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ) <s ( ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { ⟨ dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) , 2o ⟩ } ) )
82 iftrue ( ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → if ( ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 , ( ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { ⟨ dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) , 2o ⟩ } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) ) ) ) = ( ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { ⟨ dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) , 2o ⟩ } ) )
83 1 82 syl5eq ( ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦𝑆 = ( ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { ⟨ dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) , 2o ⟩ } ) )
84 83 dmeqd ( ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → dom 𝑆 = dom ( ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { ⟨ dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) , 2o ⟩ } ) )
85 73 dmsnop dom { ⟨ dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) , 2o ⟩ } = { dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) }
86 85 uneq2i ( dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∪ dom { ⟨ dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) , 2o ⟩ } ) = ( dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) } )
87 dmun dom ( ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { ⟨ dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) , 2o ⟩ } ) = ( dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∪ dom { ⟨ dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) , 2o ⟩ } )
88 df-suc suc dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) = ( dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) } )
89 86 87 88 3eqtr4i dom ( ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { ⟨ dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) , 2o ⟩ } ) = suc dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 )
90 84 89 eqtrdi ( ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → dom 𝑆 = suc dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) )
91 90 adantr ( ( ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴 ) ) → dom 𝑆 = suc dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) )
92 91 reseq2d ( ( ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴 ) ) → ( 𝑈 ↾ dom 𝑆 ) = ( 𝑈 ↾ suc dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ) )
93 83 adantr ( ( ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴 ) ) → 𝑆 = ( ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { ⟨ dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) , 2o ⟩ } ) )
94 81 92 93 3brtr4d ( ( ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴 ) ) → ( 𝑈 ↾ dom 𝑆 ) <s 𝑆 )
95 simpl ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴 ) ) → ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 )
96 simpr1 ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴 ) ) → 𝐴 No )
97 simpr2 ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴 ) ) → 𝐴 ∈ V )
98 simpr3 ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴 ) ) → 𝑈𝐴 )
99 1 nosupbnd1lem6 ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ 𝑈𝐴 ) → ( 𝑈 ↾ dom 𝑆 ) <s 𝑆 )
100 95 96 97 98 99 syl121anc ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴 ) ) → ( 𝑈 ↾ dom 𝑆 ) <s 𝑆 )
101 94 100 pm2.61ian ( ( 𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴 ) → ( 𝑈 ↾ dom 𝑆 ) <s 𝑆 )