Step |
Hyp |
Ref |
Expression |
1 |
|
nosupbnd1.1 |
⊢ 𝑆 = if ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 , ( ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { 〈 dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) , 2o 〉 } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) ) |
2 |
|
simp2l |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ 𝑈 ∈ 𝐴 ) → 𝐴 ⊆ No ) |
3 |
|
simp3 |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ 𝑈 ∈ 𝐴 ) → 𝑈 ∈ 𝐴 ) |
4 |
2 3
|
sseldd |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ 𝑈 ∈ 𝐴 ) → 𝑈 ∈ No ) |
5 |
|
nofv |
⊢ ( 𝑈 ∈ No → ( ( 𝑈 ‘ dom 𝑆 ) = ∅ ∨ ( 𝑈 ‘ dom 𝑆 ) = 1o ∨ ( 𝑈 ‘ dom 𝑆 ) = 2o ) ) |
6 |
4 5
|
syl |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ 𝑈 ∈ 𝐴 ) → ( ( 𝑈 ‘ dom 𝑆 ) = ∅ ∨ ( 𝑈 ‘ dom 𝑆 ) = 1o ∨ ( 𝑈 ‘ dom 𝑆 ) = 2o ) ) |
7 |
|
3oran |
⊢ ( ( ( 𝑈 ‘ dom 𝑆 ) = ∅ ∨ ( 𝑈 ‘ dom 𝑆 ) = 1o ∨ ( 𝑈 ‘ dom 𝑆 ) = 2o ) ↔ ¬ ( ¬ ( 𝑈 ‘ dom 𝑆 ) = ∅ ∧ ¬ ( 𝑈 ‘ dom 𝑆 ) = 1o ∧ ¬ ( 𝑈 ‘ dom 𝑆 ) = 2o ) ) |
8 |
6 7
|
sylib |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ 𝑈 ∈ 𝐴 ) → ¬ ( ¬ ( 𝑈 ‘ dom 𝑆 ) = ∅ ∧ ¬ ( 𝑈 ‘ dom 𝑆 ) = 1o ∧ ¬ ( 𝑈 ‘ dom 𝑆 ) = 2o ) ) |
9 |
|
simpl1 |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ 𝑈 ∈ 𝐴 ) ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) → ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) |
10 |
|
simpl2 |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ 𝑈 ∈ 𝐴 ) ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) → ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ) |
11 |
|
simpl3 |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ 𝑈 ∈ 𝐴 ) ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) → 𝑈 ∈ 𝐴 ) |
12 |
|
simpr |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ 𝑈 ∈ 𝐴 ) ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) → ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) |
13 |
1
|
nosupbnd1lem4 |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) → ( 𝑈 ‘ dom 𝑆 ) ≠ ∅ ) |
14 |
9 10 11 12 13
|
syl112anc |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ 𝑈 ∈ 𝐴 ) ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) → ( 𝑈 ‘ dom 𝑆 ) ≠ ∅ ) |
15 |
14
|
neneqd |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ 𝑈 ∈ 𝐴 ) ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) → ¬ ( 𝑈 ‘ dom 𝑆 ) = ∅ ) |
16 |
1
|
nosupbnd1lem5 |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) → ( 𝑈 ‘ dom 𝑆 ) ≠ 1o ) |
17 |
9 10 11 12 16
|
syl112anc |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ 𝑈 ∈ 𝐴 ) ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) → ( 𝑈 ‘ dom 𝑆 ) ≠ 1o ) |
18 |
17
|
neneqd |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ 𝑈 ∈ 𝐴 ) ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) → ¬ ( 𝑈 ‘ dom 𝑆 ) = 1o ) |
19 |
1
|
nosupbnd1lem3 |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) → ( 𝑈 ‘ dom 𝑆 ) ≠ 2o ) |
20 |
9 10 11 12 19
|
syl112anc |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ 𝑈 ∈ 𝐴 ) ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) → ( 𝑈 ‘ dom 𝑆 ) ≠ 2o ) |
21 |
20
|
neneqd |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ 𝑈 ∈ 𝐴 ) ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) → ¬ ( 𝑈 ‘ dom 𝑆 ) = 2o ) |
22 |
15 18 21
|
3jca |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ 𝑈 ∈ 𝐴 ) ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) → ( ¬ ( 𝑈 ‘ dom 𝑆 ) = ∅ ∧ ¬ ( 𝑈 ‘ dom 𝑆 ) = 1o ∧ ¬ ( 𝑈 ‘ dom 𝑆 ) = 2o ) ) |
23 |
8 22
|
mtand |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ 𝑈 ∈ 𝐴 ) → ¬ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) |
24 |
1
|
nosupbnd1lem1 |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ 𝑈 ∈ 𝐴 ) → ¬ 𝑆 <s ( 𝑈 ↾ dom 𝑆 ) ) |
25 |
1
|
nosupno |
⊢ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) → 𝑆 ∈ No ) |
26 |
25
|
3ad2ant2 |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ 𝑈 ∈ 𝐴 ) → 𝑆 ∈ No ) |
27 |
|
nodmon |
⊢ ( 𝑆 ∈ No → dom 𝑆 ∈ On ) |
28 |
26 27
|
syl |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ 𝑈 ∈ 𝐴 ) → dom 𝑆 ∈ On ) |
29 |
|
noreson |
⊢ ( ( 𝑈 ∈ No ∧ dom 𝑆 ∈ On ) → ( 𝑈 ↾ dom 𝑆 ) ∈ No ) |
30 |
4 28 29
|
syl2anc |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ 𝑈 ∈ 𝐴 ) → ( 𝑈 ↾ dom 𝑆 ) ∈ No ) |
31 |
|
sltso |
⊢ <s Or No |
32 |
|
solin |
⊢ ( ( <s Or No ∧ ( ( 𝑈 ↾ dom 𝑆 ) ∈ No ∧ 𝑆 ∈ No ) ) → ( ( 𝑈 ↾ dom 𝑆 ) <s 𝑆 ∨ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ∨ 𝑆 <s ( 𝑈 ↾ dom 𝑆 ) ) ) |
33 |
31 32
|
mpan |
⊢ ( ( ( 𝑈 ↾ dom 𝑆 ) ∈ No ∧ 𝑆 ∈ No ) → ( ( 𝑈 ↾ dom 𝑆 ) <s 𝑆 ∨ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ∨ 𝑆 <s ( 𝑈 ↾ dom 𝑆 ) ) ) |
34 |
30 26 33
|
syl2anc |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ 𝑈 ∈ 𝐴 ) → ( ( 𝑈 ↾ dom 𝑆 ) <s 𝑆 ∨ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ∨ 𝑆 <s ( 𝑈 ↾ dom 𝑆 ) ) ) |
35 |
23 24 34
|
ecase23d |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ 𝑈 ∈ 𝐴 ) → ( 𝑈 ↾ dom 𝑆 ) <s 𝑆 ) |